[go: up one dir, main page]

login
Search: a326589 -id:a326589
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sum of all the parts in the partitions of n into 10 parts.
+10
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 11, 24, 39, 70, 105, 176, 255, 396, 570, 840, 1155, 1650, 2231, 3072, 4100, 5512, 7209, 9520, 12267, 15900, 20243, 25824, 32472, 40936, 50925, 63396, 78144, 96292, 117585, 143600, 173922, 210546, 253184, 304128, 363150
OFFSET
0,11
FORMULA
a(n) = n * Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} 1.
a(n) = n * A026816(n).
a(n) = A326589(n) + A326590(n) + A326591(n) + A326592(n) + A326593(n) + A326594(n) + A326595(n) + A326596(n) + A326597(n) + A326598(n).
MATHEMATICA
Table[n * Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[1, {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 13 2019
STATUS
approved
Sum of the ninth largest parts of the partitions of n into 10 parts.
+10
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 31, 44, 58, 80, 105, 140, 182, 238, 304, 393, 496, 630, 787, 986, 1219, 1512, 1853, 2273, 2765, 3362, 4055, 4894, 5860, 7016, 8351, 9931, 11746, 13885, 16330, 19188, 22452, 26242, 30549, 35531
OFFSET
0,13
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} q.
a(n) = A326588(n) - A326589(n) - A326591(n) - A326592(n) - A326593(n) - A326594(n) - A326595(n) - A326596(n) - A326597(n) - A326598(n).
MATHEMATICA
Table[Total[IntegerPartitions[n, {10}][[;; , 9]]], {n, 0, 60}] (* Harvey P. Dale, Mar 18 2023 *)
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 13 2019
STATUS
approved
Sum of the eighth largest parts of the partitions of n into 10 parts.
+10
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 23, 32, 46, 61, 85, 112, 151, 197, 261, 335, 437, 554, 710, 891, 1125, 1398, 1747, 2151, 2657, 3246, 3972, 4812, 5840, 7023, 8455, 10104, 12076, 14339, 17029, 20102, 23724, 27857, 32694, 38190, 44588
OFFSET
0,13
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} p.
a(n) = A326588(n) - A326589(n) - A326590(n) - A326592(n) - A326593(n) - A326594(n) - A326595(n) - A326596(n) - A326597(n) - A326598(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[p, {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 13 2019
STATUS
approved
Sum of the seventh largest parts in the partitions of n into 10 parts.
+10
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 16, 24, 34, 49, 66, 92, 123, 167, 220, 293, 380, 497, 636, 818, 1035, 1312, 1642, 2059, 2551, 3162, 3884, 4769, 5806, 7068, 8539, 10310, 12370, 14826, 17670, 21038, 24920, 29482, 34725, 40848, 47852, 55989
OFFSET
0,13
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} o.
a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326593(n) - A326594(n) - A326595(n) - A326596(n) - A326597(n) - A326598(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[o, {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 13 2019
STATUS
approved
Sum of the sixth largest parts of the partitions of n into 10 parts.
+10
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 12, 17, 26, 37, 54, 73, 104, 139, 191, 253, 340, 442, 584, 749, 970, 1232, 1571, 1971, 2486, 3087, 3844, 4734, 5835, 7119, 8699, 10530, 12753, 15332, 18426, 21998, 26259, 31153, 36938, 43575, 51360, 60250
OFFSET
0,13
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} m.
a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326592(n) - A326594(n) - A326595(n) - A326596(n) - A326597(n) - A326598(n).
MATHEMATICA
Table[Total[IntegerPartitions[n, {10}][[All, 6]]], {n, 0, 60}] (* Harvey P. Dale, Dec 20 2020 *)
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 13 2019
STATUS
approved
Sum of the fifth largest parts of the partitions of n into 10 parts.
+10
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 13, 19, 29, 42, 62, 85, 121, 164, 226, 303, 407, 534, 706, 912, 1184, 1511, 1930, 2433, 3072, 3831, 4776, 5900, 7281, 8909, 10898, 13223, 16031, 19312, 23231, 27787, 33194, 39444, 46806, 55292, 65219, 76603
OFFSET
0,13
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} l.
a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326592(n) - A326593(n) - A326595(n) - A326596(n) - A326597(n) - A326598(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[l, {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 13 2019
STATUS
approved
Sum of the fourth largest parts of the partitions of n into 10 parts.
+10
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 6, 9, 15, 22, 35, 50, 75, 103, 149, 202, 281, 376, 510, 669, 889, 1149, 1499, 1913, 2453, 3093, 3917, 4886, 6106, 7544, 9330, 11419, 13989, 16979, 20614, 24837, 29912, 35785, 42790, 50857, 60399, 71360, 84233, 98952
OFFSET
0,13
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} k.
a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326592(n) - A326593(n) - A326594(n) - A326596(n) - A326597(n) - A326598(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[k, {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 13 2019
STATUS
approved
Sum of the third largest parts of the partitions of n into 10 parts.
+10
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 7, 11, 19, 28, 44, 65, 96, 134, 194, 265, 367, 496, 670, 883, 1173, 1521, 1980, 2537, 3248, 4104, 5194, 6488, 8101, 10025, 12387, 15175, 18582, 22570, 27385, 33020, 39745, 47569, 56861, 67602, 80253, 94849, 111914
OFFSET
0,13
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} j.
a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326592(n) - A326593(n) - A326594(n) - A326595(n) - A326597(n) - A326598(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[j, {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 13 2019
STATUS
approved
Sum of the second largest parts of the partitions of n into 10 parts.
+10
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 10, 15, 27, 39, 63, 91, 137, 190, 277, 376, 525, 704, 956, 1255, 1671, 2160, 2818, 3599, 4616, 5819, 7369, 9187, 11480, 14179, 17527, 21441, 26256, 31851, 38649, 46543, 56022, 66980, 80050, 95083, 112860, 133266
OFFSET
0,13
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} i.
a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326592(n) - A326593(n) - A326594(n) - A326595(n) - A326596(n) - A326598(n).
MATHEMATICA
Table[Total[IntegerPartitions[n, {10}][[;; , 2]]], {n, 0, 50}] (* Harvey P. Dale, Nov 19 2023 *)
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 13 2019
STATUS
approved
Sum of the largest parts of the partitions of n into 10 parts.
+10
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 9, 17, 27, 46, 69, 108, 158, 234, 329, 471, 645, 891, 1198, 1614, 2125, 2808, 3637, 4718, 6029, 7699, 9709, 12243, 15265, 19013, 23473, 28933, 35381, 43211, 52396, 63436, 76343, 91710, 109580, 130720, 155171, 183884
OFFSET
0,12
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} (n-i-j-k-l-m-o-p-q-r).
a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326592(n) - A326593(n) - A326594(n) - A326595(n) - A326596(n) - A326597(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[(n - i - j - k - l - m - o - p - q - r), {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 13 2019
STATUS
approved

Search completed in 0.009 seconds