Displaying 1-9 of 9 results found.
page
1
E.g.f. C(x)^2 = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!^2, where C(x) = cos( Integral 1/x * (Integral C(x) dx) dx ) is the e.g.f of A326551.
+20
1
1, -4, 256, -67072, 49479680, -82817122304, 273099601739776, -1606512897507196928, 15659025634284911198208, -238894370882781809622384640, 5451274531297360096585324691456, -179296966081016547805899589056200704, 8242844472527700570663352676068232265728, -516102091343047279882754030489835708929277952, 43042816831864259208854418353099287467922680709120
EXAMPLE
E.g.f.: C(x)^2 = 1 - 4*x^2/2!^2 + 256*x^4/4!^2 - 67072*x^6/6!^2 + 49479680*x^8/8!^2 - 82817122304*x^10/10!^2 + 273099601739776*x^12/12!^2 - 1606512897507196928*x^14/14!^2 + 15659025634284911198208*x^16/16!^2 - 238894370882781809622384640*x^18/18!^2 + 5451274531297360096585324691456*x^20/20!^2 + ...
where C(x) is the e.g.f. of A326551:
C(x) = 1 - 2*x^2/2!^2 + 56*x^4/4!^2 - 8336*x^6/6!^2 + 3985792*x^8/8!^2 - 4679517952*x^10/10!^2 + 11427218287616*x^12/12!^2 - 51793067942397952*x^14/14!^2 + 400951893341645930496*x^16/16!^2 - 4975999084909976839454720*x^18/18!^2 + 94178912073481319162642169856*x^20/20!^2 -+ ...
such that C(x) = cos( Integral 1/x * (Integral C(x) dx) dx ),
note also C(x*y) = cos( Integral Integral C(x*y) dx dy ).
PROG
(PARI)
{a(n) = my(C=1, S=x); for(i=1, 2*n,
S = intformal( C/x * intformal( C +x*O(x^(2*n)) ) );
C = 1 - intformal( S/x * intformal( C +x*O(x^(2*n)) ) ); ); (2*n)!^2*polcoeff(C^2, 2*n)}
for(n=0, 30, print1(a(n), ", "))
E.g.f. S(x), where C(x*y) + iS(x*y) = exp( i*Integral Integral C(x*y) dx dy ) such that C(x)^2 + S(x)^2 = 1.
+10
8
1, -8, 576, -160768, 123535360, -212713734144, 716196297048064, -4280584942657732608, 42250703121584165486592, -651154631135458759089848320, 14983590319172065236171175755776, -496301942561421311900528265903734784, 22953613919171561374366988621726483480576, -1444609513446024762131466039751756562435145728, 121022534222796916421149671221445519229890299166720
COMMENTS
The hyperbolic analog of the e.g.f. is described by A325292.
FORMULA
E.g.f. S(x) = Sum_{n>=0} a(n)*x^(2*n+1)/(2*n+1)!^2, where series S(x) and related series C(x) satisfy the following relations.
(1.a) C(x)^2 + S(x)^2 = 1.
(1.b) S'(x)/C(x) = -C'(x)/S(x) = 1/x * Integral C(x) dx.
(2.a) S(x) = Integral C(x)/x * (Integral C(x) dx) dx.
(2.b) C(x) = 1 - Integral S(x)/x * (Integral C(x) dx) dx.
(3.a) C(x) + i*S(x) = exp( i*Integral 1/x * (Integral C(x) dx) dx ).
(3.b) C(x) = cos( Integral 1/x * (Integral C(x) dx) dx ).
(3.c) S(x) = sin( Integral 1/x * (Integral C(x) dx) dx ).
Integration.
(4.a) S(x*y) = Integral C(x*y) * (Integral C(x*y) dy) dx.
(4.b) C(x*y) = 1 - Integral S(x*y) * (Integral C(x*y) dy) dx.
(4.c) S(x*y) = Integral C(x*y) * (Integral C(x*y) dx) dy.
(4.d) C(x*y) = 1 - Integral S(x*y) * (Integral C(x*y) dx) dy.
Exponential.
(5.a) C(x*y) + i*S(x*y) = exp( i*Integral Integral C(x*y) dx dy ).
(5.b) C(x*y) = cos( Integral Integral C(x*y) dx dy ).
(5.c) S(x*y) = sin( Integral Integral C(x*y) dx dy ).
Derivatives.
(6.a) d/dx S(x*y) = C(x*y) * Integral C(x*y) dy.
(6.b) d/dx C(x*y) = -S(x*y) * Integral C(x*y) dy.
(6.c) d/dy S(x*y) = C(x*y) * Integral C(x*y) dx.
(6.d) d/dy C(x*y) = -S(x*y) * Integral C(x*y) dx.
EXAMPLE
E.g.f. S(x) = x - 8*x^3/3!^2 + 576*x^5/5!^2 - 160768*x^7/7!^2 + 123535360*x^9/9!^2 - 212713734144*x^11/11!^2 + 716196297048064*x^13/13!^2 - 4280584942657732608*x^15/15!^2 + 42250703121584165486592*x^17/17!^2 - 651154631135458759089848320*x^19/19!^2 + 14983590319172065236171175755776*x^21/21!^2 -+ ...
where S(x) = sin( Integral 1/x * (Integral C(x) dx) dx ),
also, S(x*y) = sin( Integral Integral C(x*y) dx dy ),
such that C(x)^2 + S(x)^2 = 1.
RELATED SERIES.
C(x) = 1 - 2*x^2/2!^2 + 56*x^4/4!^2 - 8336*x^6/6!^2 + 3985792*x^8/8!^2 - 4679517952*x^10/10!^2 + 11427218287616*x^12/12!^2 - 51793067942397952*x^14/14!^2 + 400951893341645930496*x^16/16!^2 - 4975999084909976839454720*x^18/18!^2 + 94178912073481319162642169856*x^20/20!^2 -+ ...
where C(x) = cos( Integral 1/x * (Integral C(x) dx) dx ),
also, C(x*y) = cos( Integral Integral C(x*y) dx dy ).
RELATED FUNCTIONS.
Given functions Ax, Bx, Cx, Ay, By, and Cy defined by
(1a) Ax = 0 + Integral Bx*Cy - Cx*By dx,
(1b) Bx = 1 + Integral Cx*Ay - Ax*Cy dx,
(1c) Cx = 0 + Integral Ax*By - Bx*Ay dx,
(2a) Ay = 0 + Integral By*Cx - Cy*Bx dy,
(2b) By = 0 + Integral Cy*Ax - Ay*Cx dy,
(2c) Cy = 1 + Integral Ay*Bx - By*Ax dy,
then
S(x*y) = Ax*Ay + Bx*By + Cx*Cy.
These related series begin as follows.
Ax = x + (-1*x^3 - 3*x*y^2)/3! + (1*x^5 - 30*x^3*y^2 + 5*x*y^4)/5! + (-1*x^7 + 315*x^5*y^2 + 525*x^3*y^4 - 7*x*y^6)/7! + (1*x^9 - 1260*x^7*y^2 + 18270*x^5*y^4 - 2940*x^3*y^6 + 9*x*y^8)/9! + (-1*x^11 + 3465*x^9*y^2 - 496650*x^7*y^4 - 695310*x^5*y^6 + 10395*x^3*y^8 - 11*x*y^10)/11! + ... ( A326797)
Bx = 1 + (-1*x^2)/2! + (1*x^4)/4! + (-1*x^6 + 120*x^4*y^2)/6! + (1*x^8 - 672*x^6*y^2)/8! + (-1*x^10 + 2160*x^8*y^2 - 120960*x^6*y^4)/10! + (1*x^12 - 5280*x^10*y^2 + 1584000*x^8*y^4)/12! + ... ( A326798)
Cx = (2*x*y)/2! + (-4*x*y^3)/4! + (-160*x^3*y^3 + 6*x*y^5)/6! + (1344*x^3*y^5 - 8*x*y^7)/8! + (145152*x^5*y^5 - 5760*x^3*y^7 + 10*x*y^9)/10! + (-2534400*x^5*y^7 + 17600*x^3*y^9 - 12*x*y^11)/12! + ... ( A326799)
Ay = -y + (3*x^2*y + 1*y^3)/3! + (-5*x^4*y + 30*x^2*y^3 + -1*y^5)/5! + (7*x^6*y + -525*x^4*y^3 + -315*x^2*y^5 + 1*y^7)/7! + (-9*x^8*y + 2940*x^6*y^3 + -18270*x^4*y^5 + 1260*x^2*y^7 + -1*y^9)/9! + (11*x^10*y + -10395*x^8*y^3 + 695310*x^6*y^5 + 496650*x^4*y^7 + -3465*x^2*y^9 + 1*y^11)/11! + ...
By = (2*x*y)/2! + (-4*x^3*y)/4! + (6*x^5*y + -160*x^3*y^3)/6! + (-8*x^7*y + 1344*x^5*y^3)/8! + (10*x^9*y + -5760*x^7*y^3 + 145152*x^5*y^5)/10! + (-12*x^11*y + 17600*x^9*y^3 + -2534400*x^7*y^5)/12! + ...
Cy = 1 + (-1*y^2)/2! + (1*y^4)/4! + (120*x^2*y^4 + -1*y^6)/6! + (-672*x^2*y^6 + 1*y^8)/8! + (-120960*x^4*y^6 + 2160*x^2*y^8 + -1*y^10)/10! + (1584000*x^4*y^8 + -5280*x^2*y^10 + 1*y^12)/12! + ...
PROG
(PARI) {a(n) = my(C=1, S=x); for(i=1, 2*n+1,
S = intformal( C/x * intformal( C +x*O(x^(2*n+1)) ) );
C = 1 - intformal( S/x * intformal( C +x*O(x^(2*n+1)) ) ); ); (2*n+1)!^2*polcoeff(S, 2*n+1)}
for(n=0, 30, print1(a(n), ", "))
Consider the e.g.f. S(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n-2*k+1) * y^(2*k) / ((2*n-2*k+1)!*(2*k)!) and related functions C(x,y) and D(x,y), as defined in the Formula section. Sequence gives the triangular array of coefficients T(n,k) (n>=0, 0<=k<=n) of S(x,y).
+10
8
1, -1, -1, 1, -3, 1, -1, 15, 15, -1, 1, -35, 145, -35, 1, -1, 63, -1505, -1505, 63, -1, 1, -99, 5985, -30387, 5985, -99, 1, -1, 143, -16401, 539679, 539679, -16401, 143, -1, 1, -195, 36465, -3275811, 18679617, -3275811, 36465, -195, 1, -1, 255, -70785, 12723711, -506849409, -506849409, 12723711, -70785, 255, -1
COMMENTS
The e.g.f. S(x,y) is equivalent to the e.g.f. of A326797.
FORMULA
The e.g.f. Sx = S(x,y) and related functions Cx = C(x,y), Dx = D(x,y), Sy = S(y,x), Cy = C(y,x), and Dy = D(y,x) satisfy the following relations.
DEFINITION.
(1a) Sx = Integral Cx*Dy + Cy*Dx dx,
(1b) Cx = sqrt(1/2) - Integral Sx*Dy + Sy*Dx dx,
(1c) Dx = sqrt(1/2) - Integral Sx*Cy - Sy*Cx dx,
(2a) Sy = Integral Cy*Dx + Cx*Dy dy,
(2b) Cy = sqrt(1/2) - Integral Sy*Dx + Sx*Dy dy,
(2c) Dy = sqrt(1/2) - Integral Sy*Cx - Sx*Cy dy.
IDENTITIES.
(3a) Dx^2 + Cx^2 + Sx^2 = 1.
(3b) Dy^2 + Cy^2 + Sy^2 = 1.
(4a) Dx*(d/dx Dx) + Cx*(d/dx Cx) + Sx*(d/dx Sx) = 0.
(4b) Dy*(d/dy Dy) + Cy*(d/dy Cy) + Sy*(d/dy Sy) = 0.
(4c) Dy*(d/dx Dx) - Cy*(d/dx Cx) - Sy*(d/dx Sx) = 0.
(4d) Dx*(d/dy Dy) - Cx*(d/dy Cy) - Sx*(d/dy Sy) = 0.
(5a) (Dx*Dy - Cx*Cy - Sx*Sy)^2 + (d/dx Dx)^2 + (d/dx Cx)^2 + (d/dx Sx)^2 = 1.
(5b) (Dx*Dy - Cx*Cy - Sx*Sy)^2 + (d/dy Dy)^2 + (d/dy Cy)^2 + (d/dy Sy)^2 = 1.
RELATED FUNCTIONS.
(6a) SS(x*y) = Dx*Dy - Cx*Cy - Sx*Sy.
(6b) d/dx SS(x*y) = Dx*(d/dx Dy) - Cx*(d/dx Cy) - Sx*(d/dx Sy).
(6c) d/dy SS(x*y) = Dy*(d/dy Dx) - Cy*(d/dy Cx) - Sy*(d/dy Sx).
(7a) CC(x*y)^2 = (Cx*Dy + Cy*Dx)^2 + (Sx*Dy + Sy*Dx)^2 + (Sx*Cy - Sy*Cx)^2.
(7b) CC(x*y)^2 = (d/dx Dx)^2 + (d/dx Cx)^2 + (d/dx Sx)^2.
(7c) CC(x*y)^2 = (d/dy Dy)^2 + (d/dy Cy)^2 + (d/dy Sy)^2.
In the above, CC(x) and SS(x) are the e.g.f.s of A326551 and A326552 defined by
(8a) CC(x*y)^2 + SS(x*y)^2 = 1,
(8b) SS(x*y) = Integral CC(x*y) * (Integral CC(x*y) dy) dx,
(8c) CC(x*y) = 1 - Integral SS(x*y) * (Integral CC(x*y) dy) dx,
(8d) SS(x*y) = sin( Integral Integral CC(x*y) dx dy ),
(8e) CC(x*y) = cos( Integral Integral CC(x*y) dx dy ).
DERIVATIVES.
(9a) d/dx Sx = Cx*Dy + Cy*Dx.
(9b) d/dx Cx = -Sx*Dy - Sy*Dx.
(9c) d/dx Dx = -Sx*Cy + Sy*Cx.
(9d) d/dy Sy = Sy*Dx + Sx*Dy.
(9e) d/dy Cy = -Sy*Dx - Sx*Dy.
(9f) d/dy Dy = -Sy*Cx + Sx*Cy.
EXAMPLE
E.g.f.: S(x,y) = x + (-x^3/3! - x*y^2/2! ) + ( x^5/5! - 3*x^3*y^2/(3!*2!) + x*y^4/4! ) + (-x^7/7! + 15*x^5*y^2/(5!*2!) + 15*x^3*y^4/(3!*4!) - x*y^6/6! ) + ( x^9/9! - 35*x^7*y^2/(7!*2!) + 145*x^5*y^4/(5!*4!) - 35*x^3*y^6/(3!*6!) + x*y^8/8! ) + (-x^11/11! + 63*x^9*y^2/(9!*2!) - 1505*x^7*y^4/(7!*4!) - 1505*x^5*y^6/(5!*6!) + 63*x^3*y^8/(3!*8!) - x*y^10/10! ) + ( x^13/13! - 99*x^11*y^2/(11!*2!) + 5985*x^9*y^4/(9!*4!) - 30387*x^7*y^6/(7!*6!) + 5985*x^5*y^8/(5!*8!) - 99*x^3*y^10/(3!*10!) + x*y^12/12! ) + (-x^15/15! + 143*x^13*y^2/(13!*2!) - 16401*x^11*y^4/(11!*4!) + 539679*x^9*y^6/(9!*6!) + 539679*x^7*y^8/(7!*8!) - 16401*x^5*y^10/(5!*10!) + 143*x^3*y^12/(3!*12!) - x*y^14/14! ) + ( x^17/17! - 195*x^15*y^2/(15!*2!) + 36465*x^13*y^4/(13!*4!) - 3275811*x^11*y^6/(11!*6!) + 18679617*x^9*y^8/(9!*8!) - 3275811*x^7*y^10/(7!*10!) + 36465*x^5*y^12/(5!*12!) - 195*x^3*y^14/(3!*14!) + x*y^16/16! ) + (-x^19/19! + 255*x^17*y^2/(17!*2!) - 70785*x^15*y^4/(15!*4!) + 12723711*x^13*y^6/(13!*6!) - 506849409*x^11*y^8/(11!*8!) - 506849409*x^9*y^10/(9!*10!) + 12723711*x^7*y^12/(7!*12!) - 70785*x^5*y^14/(5!*14!) + 255*x^3*y^16/(3!*16!) - x*y^18/18! ) + ( x^21/21! - 323*x^19*y^2/(19!*2!) + 124865*x^17*y^4/(17!*4!) - 38067315*x^15*y^6/(15!*6!) + 4363117473*x^13*y^8/(13!*8!) - 26803260803*x^11*y^10/(11!*10!) + 4363117473*x^9*y^12/(9!*12!) - 38067315*x^7*y^14/(7!*14!) + 124865*x^5*y^16/(5!*16!) - 323*x^3*y^18/(3!*18!) + x*y^20/20! ) + ...
This triangle of coefficients T(n,k) of x^(2*n-2*k+1)*y^(2*k)/((2*n-2*k+1)!*(2*k)!) in e.g.f. S(x,y) begins
1;
-1, -1;
1, -3, 1;
-1, 15, 15, -1;
1, -35, 145, -35, 1;
-1, 63, -1505, -1505, 63, -1;
1, -99, 5985, -30387, 5985, -99, 1;
-1, 143, -16401, 539679, 539679, -16401, 143, -1;
1, -195, 36465, -3275811, 18679617, -3275811, 36465, -195, 1;
-1, 255, -70785, 12723711, -506849409, -506849409, 12723711, -70785, 255, -1;
1, -323, 124865, -38067315, 4363117473, -26803260803, 4363117473, -38067315, 124865, -323, 1;
-1, 399, -205105, 95686591, -22813329825, 1031421316783, 1031421316783, -22813329825, 95686591, -205105, 399, -1;
1, -483, 318801, -212188067, 88405315713, -11952302851203, 77353020714385, -11952302851203, 88405315713, -212188067, 318801, -483, 1; ...
RELATED SERIES.
C(x,y) = sqrt(1/2) * (1 + (-x^2/2! - x*y ) + ( x^4/4! + x*y^3/3! ) + (-x^6/6! + 8*x^4*y^2/(4!*2!) + 8*x^3*y^3/(3!*3!) - x*y^5/5! ) + ( x^8/8! - 24*x^6*y^2/(6!*2!) - 24*x^3*y^5/(3!*5!) + x*y^7/7! ) + (-x^10/10! + 48*x^8*y^2/(8!*2!) - 576*x^6*y^4/(6!*4!) - 576*x^5*y^5/(5!*5!) + 48*x^3*y^7/(3!*7!) - x*y^9/9! ) + ( x^12/12! - 80*x^10*y^2/(10!*2!) + 3200*x^8*y^4/(8!*4!) + 3200*x^5*y^7/(5!*7!) - 80*x^3*y^9/(3!*9!) + x*y^11/11! ) + (-x^14/14! + 120*x^12*y^2/(12!*2!) - 10240*x^10*y^4/(10!*4!) + 160768*x^8*y^6/(8!*6!) + 160768*x^7*y^7/(7!*7!) - 10240*x^5*y^9/(5!*9!) + 120*x^3*y^11/(3!*11!) - x*y^13/13! ) + ...).
D(x,y) = sqrt(1/2) * (1 + (-x^2/2! + x*y ) + ( x^4/4! - x*y^3/3! ) + (-x^6/6! + 8*x^4*y^2/(4!*2!) - 8*x^3*y^3/(3!*3!) + x*y^5/5! ) + ( x^8/8! - 24*x^6*y^2/(6!*2!) + 24*x^3*y^5/(3!*5!) - x*y^7/7! ) + (-x^10/10! + 48*x^8*y^2/(8!*2!) - 576*x^6*y^4/(6!*4!) + 576*x^5*y^5/(5!*5!) - 48*x^3*y^7/(3!*7!) + x*y^9/9! ) + ( x^12/12! - 80*x^10*y^2/(10!*2!) + 3200*x^8*y^4/(8!*4!) - 3200*x^5*y^7/(5!*7!) + 80*x^3*y^9/(3!*9!) - x*y^11/11! ) + (-x^14/14! + 120*x^12*y^2/(12!*2!) - 10240*x^10*y^4/(10!*4!) + 160768*x^8*y^6/(8!*6!) - 160768*x^7*y^7/(7!*7!) + 10240*x^5*y^9/(5!*9!) - 120*x^3*y^11/(3!*11!) + x*y^13/13! ) + ...).
SS(x*y) = (x*y) - 8*(x*y)^3/3!^2 + 576*(x*y)^5/5!^2 - 160768*(x*y)^7/7!^2 + 123535360*(x*y)^9/9!^2 - 212713734144*(x*y)^11/11!^2 + 716196297048064*(x*y)^13/13!^2 - 4280584942657732608*(x*y)^15/15!^2 + 42250703121584165486592*(x*y)^17/17!^2 - 651154631135458759089848320*(x*y)^19/19!^2 + 14983590319172065236171175755776*(x*y)^21/21!^2 + ... + A326552(n)*(x*y)^(2*n-1)/(2*n-1)! + ...
such that
SS(x*y) = Dx*Dy - Cx*Cy - Sx*Sy.
CC(x*y) = 1 - 2*(x*y)^2/2!^2 + 56*(x*y)^4/4!^2 - 8336*(x*y)^6/6!^2 + 3985792*(x*y)^8/8!^2 - 4679517952*(x*y)^10/10!^2 + 11427218287616*(x*y)^12/12!^2 - 51793067942397952*(x*y)^14/14!^2 + 400951893341645930496*(x*y)^16/16!^2 - 4975999084909976839454720*(x*y)^18/18!^2 + 94178912073481319162642169856*(x*y)^20/20!^2 -+ ... + A326551(n)*(x*y)^(2*n)/(2*n)! + ...
such that
CC(x*y)^2 = (Cx*Dy + Cy*Dx)^2 + (Sx*Dy + Sy*Dx)^2 + (Sx*Cy - Sy*Cx)^2,
and CC(x*y)^2 + SS(x*y)^2 = 1.
PROG
(PARI)
{TSx(n, k) = my(Cx=1, Sx=x, Dx=1, Cy=1, Sy=y, Dy=1);
for(i=0, 2*n+1,
Sx = intformal( Cx*Dy + Cy*Dx, x) + O(x^(2*n+2));
Cx = sqrt(1/2) - intformal( Sx*Dy + Sy*Dx, x);
Dx = sqrt(1/2) - intformal( Sx*Cy - Sy*Cx, x);
Sy = intformal( Cy*Dx + Cx*Dy, y) + O(y^(2*n+2));
Cy = sqrt(1/2) - intformal( Sy*Dx + Sx*Dy, y);
Dy = sqrt(1/2) - intformal( Sy*Cx - Sx*Cy, y);
);
round( (2*n-2*k+1)!*(2*k)! * polcoeff( polcoeff(Sx, 2*n-2*k+1, x), 2*k, y) )}
for(n=0, 10, for(k=0, n, print1( TSx(n, k), ", ")); print(""))
Consider the e.g.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n-2*k+1) * y^(2*k) / (2*n+1)! and related functions B(x,y) and C(x,y), as defined in the Formula section. Sequence gives the triangular array of coefficients T(n,k) (n>=0, 0<=k<=n) of A(x,y).
+10
7
1, -1, -3, 1, -30, 5, -1, 315, 525, -7, 1, -1260, 18270, -2940, 9, -1, 3465, -496650, -695310, 10395, -11, 1, -7722, 4279275, -52144092, 7702695, -28314, 13, -1, 15015, -22387365, 2701093395, 3472834365, -49252203, 65065, -15, 1, -26520, 86786700, -40541436936, 454101489270, -63707972328, 225645420, -132600, 17
COMMENTS
The e.g.f. of this triangle is equivalent to the e.g.f. of triangle A326800, where T(n,k) = A326800(n,k) * binomial(2*n+1, 2*k).
The e.g.f. A(x,y) at y = x is described by A326794.
FORMULA
The e.g.f. Ax = A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k)*x^(2*n-2*k+1)*y^(2*k)/(2*n+1)! and related functions Bx = B(x,y), Cx = C(x,y), Ay = A(y,x), By = B(y,x), and Cy = C(y,x) satisfy the following relations.
DEFINITION.
(1a) Ax = 0 + Integral Bx*Cy - Cx*By dx,
(1b) Bx = 1 + Integral Cx*Ay - Ax*Cy dx,
(1c) Cx = 0 + Integral Ax*By - Bx*Ay dx.
(2a) Ay = 0 + Integral By*Cx - Cy*Bx dy,
(2b) By = 0 + Integral Cy*Ax - Ay*Cx dy,
(2c) Cy = 1 + Integral Ay*Bx - By*Ax dy.
IDENTITIES.
(3a) Ax^2 + Bx^2 + Cx^2 = 1.
(3b) Ay^2 + By^2 + Cy^2 = 1.
(4a) (Ax*Ay + Bx*By + Cx*Cy)^2 + (d/dx Ax)^2 + (d/dx Bx)^2 + (d/dx Cx)^2 = 1.
(4b) (Ax*Ay + Bx*By + Cx*Cy)^2 + (d/dy Ay)^2 + (d/dy By)^2 + (d/dy Cy)^2 = 1.
(5a) Ax*(d/dx Ax) + Bx*(d/dx Bx) + Cx*(d/dx Cx) = 0.
(5b) Ay*(d/dy Ay) + By*(d/dy By) + Cy*(d/dy Cy) = 0.
(5c) Ax*(d/dy Ay) + Bx*(d/dy By) + Cx*(d/dy Cy) = 0.
(5d) Ay*(d/dx Ax) + By*(d/dx Bx) + Cy*(d/dx Cx) = 0.
(5e) Ax*(d/dy Ax) + Bx*(d/dy Bx) + Cx*(d/dy Cx) = 0.
(5f) Ay*(d/dx Ay) + By*(d/dx By) + Cy*(d/dx Cy) = 0.
RELATED FUNCTIONS.
(6a) SS(x*y) = Ax*Ay + Bx*By + Cx*Cy.
(6b) d/dx SS(x*y) = Ax*(d/dx Ay) + Bx*(d/dx By) + Cx*(d/dx Cy).
(6c) d/dy SS(x*y) = Ay*(d/dy Ax) + By*(d/dy Bx) + Cy*(d/dy Cx).
(7a) CC(x*y)^2 = (Bx*Cy - Cx*By)^2 + (Cx*Ay - Ax*Cy)^2 + (Ax*By - Bx*Ay)^2.
(7b) CC(x*y)^2 = (d/dx Ax)^2 + (d/dx Bx)^2 + (d/dx Cx)^2.
(7c) CC(x*y)^2 = (d/dy Ay)^2 + (d/dy By)^2 + (d/dy Cy)^2.
In the above, CC(x) and SS(x) are the e.g.f.s of A326551 and A326552 defined by
(8a) CC(x*y)^2 + SS(x*y)^2 = 1,
(8b) SS(x*y) = Integral CC(x*y) * (Integral CC(x*y) dy) dx,
(8c) CC(x*y) = 1 - Integral SS(x*y) * (Integral CC(x*y) dy) dx,
(8d) SS(x*y) = sin( Integral Integral CC(x*y) dx dy ),
(8e) CC(x*y) = cos( Integral Integral CC(x*y) dx dy ).
OTHER RELATIONS.
(9a) Ay = Ax*SS(x*y) - Bx*(d/dx Cx) + Cx*(d/dx Bx).
(9b) By = Bx*SS(x*y) - Cx*(d/dx Ax) + Ax*(d/dx Cx).
(9c) Cy = Cx*SS(x*y) - Ax*(d/dx Bx) + Bx*(d/dx Ax).
(9d) Ax = Ay*SS(x*y) - By*(d/dy Cy) + Cy*(d/dy By).
(9e) Bx = By*SS(x*y) - Cy*(d/dy Ay) + Ay*(d/dy Cy).
(9f) Cx = Cy*SS(x*y) - Ay*(d/dy By) + By*(d/dy Ay).
DERIVATIVES.
(10a) d/dx Ax = Bx*Cy - Cx*By.
(10b) d/dx Bx = Cx*Ay - Ax*Cy.
(10c) d/dx Cx = Ax*By - Bx*Ay.
(10d) d/dy Ay = By*Cx - Cy*Bx.
(10e) d/dy By = Cy*Ax - Ay*Cx.
(10f) d/dy Cy = Ay*Bx - By*Ax.
VECTOR FORM.
Set radial vectors Vx = [Ax,Bx,Cx] and Vy = [Ay,By,Cy], then we can write the above relations in compact form using cross (X) products and dot (*) products.
(1) Vx = [0,1,0] + Integral Vx X Vy dx.
(2) Vy = [0,0,1] + Integral Vy X Vx dy.
(3a) Vx * Vx = 1.
(3b) Vy * Vy = 1.
(4a) (Vx * Vy)^2 + (d/dx Vx) * (d/dx Vx) = 1.
(4b) (Vx * Vy)^2 + (d/dy Vy) * (d/dy Vy) = 1.
(5a) Vx * (d/dx Vx) = 0.
(5b) Vy * (d/dy Vy) = 0.
(5c) Vx * (d/dy Vy) = 0.
(5d) Vy * (d/dx Vx) = 0.
(5e) Vx * (d/dy Vx) = 0.
(5f) Vy * (d/dx Vy) = 0.
(6a) SS(x*y) = Vx * Vy.
(6b) d/dx SS(x*y) = Vx * (d/dx Vy).
(6c) d/dy SS(x*y) = Vy * (d/dy Vx).
(7) CC(x*y)^2 = (Vx X Vy) * (Vx X Vy) = 1 - (Vx * Vy)^2.
(9a-c) Vy = Vx*SS(x*y) - Vx X (d/dx Vx) because Vx X (Vx X Vy) = Vx*(Vx * Vy) - Vy.
(9d-f) Vx = Vy*SS(x*y) - Vy X (d/dy Vy) because Vy X (Vy X Vx) = Vy*(Vx * Vy) - Vx.
(10a-c) d/dx Vx = Vx X Vy.
(10d-f) d/dy Vy = Vy X Vx.
EXAMPLE
E.g.f.: A(x,y) = x + (-1*x^3 - 3*x*y^2)/3! + (1*x^5 - 30*x^3*y^2 + 5*x*y^4)/5! + (-1*x^7 + 315*x^5*y^2 + 525*x^3*y^4 - 7*x*y^6)/7! + (1*x^9 - 1260*x^7*y^2 + 18270*x^5*y^4 - 2940*x^3*y^6 + 9*x*y^8)/9! + (-1*x^11 + 3465*x^9*y^2 - 496650*x^7*y^4 - 695310*x^5*y^6 + 10395*x^3*y^8 - 11*x*y^10)/11! + (1*x^13 - 7722*x^11*y^2 + 4279275*x^9*y^4 - 52144092*x^7*y^6 + 7702695*x^5*y^8 - 28314*x^3*y^10 + 13*x*y^12)/13! + (-1*x^15 + 15015*x^13*y^2 - 22387365*x^11*y^4 + 2701093395*x^9*y^6 + 3472834365*x^7*y^8 - 49252203*x^5*y^10 + 65065*x^3*y^12 - 15*x*y^14)/15! + (1*x^17 - 26520*x^15*y^2 + 86786700*x^13*y^4 - 40541436936*x^11*y^6 + 454101489270*x^9*y^8 - 63707972328*x^7*y^10 + 225645420*x^5*y^12 - 132600*x^3*y^14 + 17*x*y^16)/17! +(-1*x^19 + 43605*x^17*y^2 - 274362660*x^15*y^4 + 345219726852*x^13*y^6 - 38308692031038*x^11*y^8 - 46821734704602*x^9*y^10 + 641122349868*x^7*y^12 - 823087980*x^5*y^14 + 247095*x^3*y^16 - 19*x*y^18)/19! + ...
such that
. A(x,y) = 0 + Integral B(x,y)*C(y,x) - C(x,y)*B(y,x) dx,
. A(y,x) = 0 + Integral B(y,x)*C(x,y) - C(y,x)*B(x,y) dy,
where B(x,y) and C(x,y) satisfy
. A(x,y)^2 + B(x,y)^2 + C(x,y)^2 = 1.
TRIANGLE.
This triangle of coefficients T(n,k) of x^(2*n-2*k+1) * y^(2*k) / (2*n+1)! in A(x,y) begins
1;
-1, -3;
1, -30, 5;
-1, 315, 525, -7;
1, -1260, 18270, -2940, 9;
-1, 3465, -496650, -695310, 10395, -11;
1, -7722, 4279275, -52144092, 7702695, -28314, 13;
-1, 15015, -22387365, 2701093395, 3472834365, -49252203, 65065, -15;
1, -26520, 86786700, -40541436936, 454101489270, -63707972328, 225645420, -132600, 17;
-1, 43605, -274362660, 345219726852, -38308692031038, -46821734704602, 641122349868, -823087980, 247095, -19;
1, -67830, 747317025, -2065684781160, 887850774580770, -9453938937390948, 1282451118838890, -4426467388200, 2540877885, -429590, 21; ...
RELATED TRIANGLE.
A related triangle ( A326800), formed from coefficients of x^(2*n-2*k+1) * y^(2*k) / ((2*n-2*k+1)!*(2*k)!) in e.g.f. A(x,y), begins
1;
-1, -1;
1, -3, 1;
-1, 15, 15, -1;
1, -35, 145, -35, 1;
-1, 63, -1505, -1505, 63, -1;
1, -99, 5985, -30387, 5985, -99, 1;
-1, 143, -16401, 539679, 539679, -16401, 143, -1;
1, -195, 36465, -3275811, 18679617, -3275811, 36465, -195, 1; ...
RELATED FUNCTIONS.
B(x,y) = 1 + (-1*x^2)/2! + (1*x^4)/4! + (-1*x^6 + 120*x^4*y^2)/6! + (1*x^8 - 672*x^6*y^2)/8! + (-1*x^10 + 2160*x^8*y^2 - 120960*x^6*y^4)/10! + (1*x^12 - 5280*x^10*y^2 + 1584000*x^8*y^4)/12! + (-1*x^14 + 10920*x^12*y^2 - 10250240*x^10*y^4 + 482786304*x^8*y^6)/14! + (1*x^16 - 20160*x^14*y^2 + 45427200*x^12*y^4 - 11480268800*x^10*y^6)/16! + ...
such that
. B(x,y) = 1 + Integral C(x,y)*A(y,x) - A(x,y)*C(y,x) dx,
. B(y,x) = 0 + Integral C(y,x)*A(x,y) - A(y,x)*C(x,y) dy.
C(x,y) = (2*x*y)/2! + (-4*x*y^3)/4! + (-160*x^3*y^3 + 6*x*y^5)/6! + (1344*x^3*y^5 - 8*x*y^7)/8! + (145152*x^5*y^5 - 5760*x^3*y^7 + 10*x*y^9)/10! + (-2534400*x^5*y^7 + 17600*x^3*y^9 - 12*x*y^11)/12! + (-551755776*x^7*y^7 + 20500480*x^5*y^9 - 43680*x^3*y^11 + 14*x*y^13)/14! + (16400384000*x^7*y^9 - 109025280*x^5*y^11 + 94080*x^3*y^13 - 16*x*y^15)/16! + ...
such that
. C(x,y) = 0 + Integral A(x,y)*B(y,x) - B(x,y)*A(y,x) dx,
. C(y,x) = 1 + Integral A(y,x)*B(x,y) - B(y,x)*A(x,y) dy.
CC(x) = 1 - 2*x^2/2!^2 + 56*x^4/4!^2 - 8336*x^6/6!^2 + 3985792*x^8/8!^2 - 4679517952*x^10/10!^2 + 11427218287616*x^12/12!^2 - 51793067942397952*x^14/14!^2 + 400951893341645930496*x^16/16!^2 + ... + A326551(n)*x^(2*n)/(2*n)!^2 + ...
such that
. CC(x*y) = sqrt( (Bx*Cy - Cx*By)^2 + (Cx*Ay - Ax*Cy)^2 + (Ax*By - Bx*Ay)^2 ).
SS(x) = x - 8*x^3/3!^2 + 576*x^5/5!^2 - 160768*x^7/7!^2 + 123535360*x^9/9!^2 - 212713734144*x^11/11!^2 + 716196297048064*x^13/13!^2 - 4280584942657732608*x^15/15!^2 + 42250703121584165486592*x^17/17!^2 + ... + A326552(n)*x^(2*n+1)/(2*n+1)!^2 + ...
such that SS(x*y) = Ax*Ay + Bx*By + Cx*Cy.
PROG
(PARI) {TAx(n, k) = my(Ax=1, Bx=x, Cx=1, Ay=1, By=y, Cy=1);
for(i=0, 2*n+1,
Ax = 0 + intformal( Bx*Cy - Cx*By, x) + O(x^(2*n+2));
Bx = 1 + intformal( Cx*Ay - Ax*Cy, x) + O(x^(2*n+2));
Cx = 0 + intformal( Ax*By - Bx*Ay, x) + O(x^(2*n+2));
Ay = 0 + intformal( By*Cx - Cy*Bx, y) + O(y^(2*n+2));
By = 0 + intformal( Cy*Ax - Ay*Cx, y) + O(y^(2*n+2));
Cy = 1 + intformal( Ay*Bx - By*Ax, y) + O(y^(2*n+2));
);
(2*n+1)! * polcoeff( polcoeff(Ax, 2*n-2*k+1, x), 2*k, y)}
for(n=0, 10, for(k=0, n, print1( TAx(n, k), ", ")); print(""))
Consider the e.g.f. B(x,y) = Sum_{n>=0} Sum_{k=0..floor(n/2)} T(n,k) * x^(2*n-2*k) * y^(2*k) / (2*n)! and related functions A(x,y) and C(x,y), as defined in the Formula section. Sequence gives the triangular array of coefficients T(n,k) (n>=0, 0<=k<=floor(n/2)) of B(x,y).
+10
6
1, -1, 1, 0, -1, 120, 1, -672, 0, -1, 2160, -120960, 1, -5280, 1584000, 0, -1, 10920, -10250240, 482786304, 1, -20160, 45427200, -11480268800, 0, -1, 34272, -157651200, 124816613376, -5405660282880, 1, -54720, 460158720, -875447623680, 203526629130240, 0
COMMENTS
The e.g.f. B(x,y) at y = x is described by A326795.
FORMULA
The e.g.f. Bx = B(x,y) = Sum_{n>=0} Sum_{k=0..floor(n/2)} T(n,k)*x^(2*n-2*k)*y^(2*k)/(2*n)! and related functions Ax = A(x,y), Cx = C(x,y), Ay = A(y,x), By = B(y,x), and Cy = C(y,x) satisfy the following relations.
DEFINITION.
(1a) Ax = 0 + Integral Bx*Cy - Cx*By dx,
(1b) Bx = 1 + Integral Cx*Ay - Ax*Cy dx,
(1c) Cx = 0 + Integral Ax*By - Bx*Ay dx.
(2a) Ay = 0 + Integral By*Cx - Cy*Bx dy,
(2b) By = 0 + Integral Cy*Ax - Ay*Cx dy,
(2c) Cy = 1 + Integral Ay*Bx - By*Ax dy.
IDENTITIES.
(3a) Ax^2 + Bx^2 + Cx^2 = 1.
(3b) Ay^2 + By^2 + Cy^2 = 1.
(4a) (Ax*Ay + Bx*By + Cx*Cy)^2 + (d/dx Ax)^2 + (d/dx Bx)^2 + (d/dx Cx)^2 = 1.
(4b) (Ax*Ay + Bx*By + Cx*Cy)^2 + (d/dy Ay)^2 + (d/dy By)^2 + (d/dy Cy)^2 = 1.
(5a) Ax*(d/dx Ax) + Bx*(d/dx Bx) + Cx*(d/dx Cx) = 0.
(5b) Ay*(d/dy Ay) + By*(d/dy By) + Cy*(d/dy Cy) = 0.
(5c) Ax*(d/dy Ay) + Bx*(d/dy By) + Cx*(d/dy Cy) = 0.
(5d) Ay*(d/dx Ax) + By*(d/dx Bx) + Cy*(d/dx Cx) = 0.
(5e) Ax*(d/dy Ax) + Bx*(d/dy Bx) + Cx*(d/dy Cx) = 0.
(5f) Ay*(d/dx Ay) + By*(d/dx By) + Cy*(d/dx Cy) = 0.
RELATED FUNCTIONS.
(6a) SS(x*y) = Ax*Ay + Bx*By + Cx*Cy.
(6b) d/dx SS(x*y) = Ax*(d/dx Ay) + Bx*(d/dx By) + Cx*(d/dx Cy).
(6c) d/dy SS(x*y) = Ay*(d/dy Ax) + By*(d/dy Bx) + Cy*(d/dy Cx).
(7a) CC(x*y)^2 = (Bx*Cy - Cx*By)^2 + (Cx*Ay - Ax*Cy)^2 + (Ax*By - Bx*Ay)^2.
(7b) CC(x*y)^2 = (d/dx Ax)^2 + (d/dx Bx)^2 + (d/dx Cx)^2.
(7c) CC(x*y)^2 = (d/dy Ay)^2 + (d/dy By)^2 + (d/dy Cy)^2.
In the above, CC(x) and SS(x) are the e.g.f.s of A326551 and A326552 defined by
(8a) CC(x*y)^2 + SS(x*y)^2 = 1,
(8b) SS(x*y) = Integral CC(x*y) * (Integral CC(x*y) dy) dx,
(8c) CC(x*y) = 1 - Integral SS(x*y) * (Integral CC(x*y) dy) dx,
(8d) SS(x*y) = sin( Integral Integral CC(x*y) dx dy ),
(8e) CC(x*y) = cos( Integral Integral CC(x*y) dx dy ).
OTHER RELATIONS..
(9a) Ay = Ax*SS(x*y) - Bx*(d/dx Cx) + Cx*(d/dx Bx).
(9b) By = Bx*SS(x*y) - Cx*(d/dx Ax) + Ax*(d/dx Cx).
(9c) Cy = Cx*SS(x*y) - Ax*(d/dx Bx) + Bx*(d/dx Ax).
(9d) Ax = Ay*SS(x*y) - By*(d/dy Cy) + Cy*(d/dy By).
(9e) Bx = By*SS(x*y) - Cy*(d/dy Ay) + Ay*(d/dy Cy).
(9f) Cx = Cy*SS(x*y) - Ay*(d/dy By) + By*(d/dy Ay).
DERIVATIVES.
(10a) d/dx Ax = Bx*Cy - Cx*By.
(10b) d/dx Bx = Cx*Ay - Ax*Cy.
(10c) d/dx Cx = Ax*By - Bx*Ay.
(10d) d/dy Ay = By*Cx - Cy*Bx.
(10e) d/dy By = Cy*Ax - Ay*Cx.
(10f) d/dy Cy = Ay*Bx - By*Ax.
EXAMPLE
E.g.f.: B(x,y) = 1 + (-1*x^2)/2! + (1*x^4)/4! + (-1*x^6 + 120*x^4*y^2)/6! + (1*x^8 - 672*x^6*y^2)/8! + (-1*x^10 + 2160*x^8*y^2 - 120960*x^6*y^4)/10! + (1*x^12 - 5280*x^10*y^2 + 1584000*x^8*y^4)/12! + (-1*x^14 + 10920*x^12*y^2 - 10250240*x^10*y^4 + 482786304*x^8*y^6)/14! + (1*x^16 - 20160*x^14*y^2 + 45427200*x^12*y^4 - 11480268800*x^10*y^6)/16! + (-1*x^18 + 34272*x^16*y^2 - 157651200*x^14*y^4 + 124816613376*x^12*y^6 - 5405660282880*x^10*y^8)/18! + (1*x^20 - 54720*x^18*y^2 + 460158720*x^16*y^4 - 875447623680*x^14*y^6 + 203526629130240*x^12*y^8)/20! + ...
such that
. B(x,y) = 1 + Integral C(x,y)*A(y,x) - A(x,y)*C(y,x) dx,
. B(y,x) = 0 + Integral C(y,x)*A(x,y) - A(y,x)*C(x,y) dy,
where A(x,y) and C(x,y) satisfy
. A(x,y)^2 + B(x,y)^2 + C(x,y)^2 = 1.
TRIANGLE.
This triangle of coefficients T(n,k) of x^(2*n-2*k)*y^(2*k)/(2*n)! in B(x,y) begins
1;
-1;
1, 0;
-1, 120;
1, -672, 0;
-1, 2160, -120960;
1, -5280, 1584000, 0;
-1, 10920, -10250240, 482786304;
1, -20160, 45427200, -11480268800, 0;
-1, 34272, -157651200, 124816613376, -5405660282880;
1, -54720, 460158720, -875447623680, 203526629130240, 0;
-1, 83160, -1179763200, 4585597986816, -3340908170772480, 137550485329281024;
1, -121440, 2733857280, -19438470610944, 34039224247615488, -7523050148723687424, 0; ...
RELATED FUNCTIONS.
A(x,y) = x + (-1*x^3 - 3*x*y^2)/3! + (1*x^5 - 30*x^3*y^2 + 5*x*y^4)/5! + (-1*x^7 + 315*x^5*y^2 + 525*x^3*y^4 - 7*x*y^6)/7! + (1*x^9 - 1260*x^7*y^2 + 18270*x^5*y^4 - 2940*x^3*y^6 + 9*x*y^8)/9! + (-1*x^11 + 3465*x^9*y^2 - 496650*x^7*y^4 - 695310*x^5*y^6 + 10395*x^3*y^8 - 11*x*y^10)/11! + (1*x^13 - 7722*x^11*y^2 + 4279275*x^9*y^4 - 52144092*x^7*y^6 + 7702695*x^5*y^8 - 28314*x^3*y^10 + 13*x*y^12)/13! + (-1*x^15 + 15015*x^13*y^2 - 22387365*x^11*y^4 + 2701093395*x^9*y^6 + 3472834365*x^7*y^8 - 49252203*x^5*y^10 + 65065*x^3*y^12 - 15*x*y^14)/15! + ...
such that
. A(x,y) = 0 + Integral B(x,y)*C(y,x) - C(x,y)*B(y,x) dx,
. A(y,x) = 0 + Integral B(y,x)*C(x,y) - C(y,x)*B(x,y) dy.
C(x,y) = (2*x*y)/2! + (-4*x*y^3)/4! + (-160*x^3*y^3 + 6*x*y^5)/6! + (1344*x^3*y^5 - 8*x*y^7)/8! + (145152*x^5*y^5 - 5760*x^3*y^7 + 10*x*y^9)/10! + (-2534400*x^5*y^7 + 17600*x^3*y^9 - 12*x*y^11)/12! + (-551755776*x^7*y^7 + 20500480*x^5*y^9 - 43680*x^3*y^11 + 14*x*y^13)/14! + (16400384000*x^7*y^9 - 109025280*x^5*y^11 + 94080*x^3*y^13 - 16*x*y^15)/16! + ...
such that
. C(x,y) = 0 + Integral A(x,y)*B(y,x) - B(x,y)*A(y,x) dx,
. C(y,x) = 1 + Integral A(y,x)*B(x,y) - B(y,x)*A(x,y) dy.
CC(x) = 1 - 2*x^2/2!^2 + 56*x^4/4!^2 - 8336*x^6/6!^2 + 3985792*x^8/8!^2 - 4679517952*x^10/10!^2 + 11427218287616*x^12/12!^2 - 51793067942397952*x^14/14!^2 + 400951893341645930496*x^16/16!^2 + ... + A326551(n)*x^(2*n)/(2*n)!^2 + ...
such that
. CC(x*y) = sqrt( (Bx*Cy - Cx*By)^2 + (Cx*Ay - Ax*Cy)^2 + (Ax*By - Bx*Ay)^2 ).
SS(x) = x - 8*x^3/3!^2 + 576*x^5/5!^2 - 160768*x^7/7!^2 + 123535360*x^9/9!^2 - 212713734144*x^11/11!^2 + 716196297048064*x^13/13!^2 - 4280584942657732608*x^15/15!^2 + 42250703121584165486592*x^17/17!^2 + ... + A326552(n)*x^(2*n+1)/(2*n+1)!^2 + ...
such that SS(x*y) = Ax*Ay + Bx*By + Cx*Cy.
PROG
(PARI) {TBx(n, k) = my(Ax=x, Bx=1, Cx=x, Ay=y, By=y, Cy=1);
for(i=0, 2*n+1,
Ax = 0 + intformal( Bx*Cy - Cx*By, x) + O(x^(2*n+2));
Bx = 1 + intformal( Cx*Ay - Ax*Cy, x) + O(x^(2*n+2));
Cx = 0 + intformal( Ax*By - Bx*Ay, x) + O(x^(2*n+2));
Ay = 0 + intformal( By*Cx - Cy*Bx, y) + O(y^(2*n+2));
By = 0 + intformal( Cy*Ax - Ay*Cx, y) + O(y^(2*n+2));
Cy = 1 + intformal( Ay*Bx - By*Ax, y) + O(y^(2*n+2));
);
(2*n)! * polcoeff( polcoeff(Bx, 2*n-2*k, x), 2*k, y)}
for(n=0, 10, for(k=0, n\2, print1( TBx(n, k), ", ")); print(""))
Consider the e.g.f. C(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n-2*k+1) * y^(2*k+1) / (2*n+2)! and related functions A(x,y) and B(x,y), as defined in the Formula section. Sequence gives the triangular array of coefficients T(n,k) (n>=0, 0<=k<=n) of C(x,y).
+10
6
2, 0, -4, 0, -160, 6, 0, 0, 1344, -8, 0, 0, 145152, -5760, 10, 0, 0, 0, -2534400, 17600, -12, 0, 0, 0, -551755776, 20500480, -43680, 14, 0, 0, 0, 0, 16400384000, -109025280, 94080, -16, 0, 0, 0, 0, 6006289203200, -213971337216, 441423360, -182784, 18
COMMENTS
The e.g.f. C(x,y) at y = x is described by A326796.
FORMULA
The e.g.f. Cx = C(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k)*x^(2*n-2*k+1)*y^(2*k+1)/(2*n+2)! and related functions Ax = A(x,y), Bx = B(x,y), Ay = A(y,x), By = B(y,x), and Cy = C(y,x) satisfy the following relations.
DEFINITION.
(1a) Ax = 0 + Integral Bx*Cy - Cx*By dx,
(1b) Bx = 1 + Integral Cx*Ay - Ax*Cy dx,
(1c) Cx = 0 + Integral Ax*By - Bx*Ay dx.
(2a) Ay = 0 + Integral By*Cx - Cy*Bx dy,
(2b) By = 0 + Integral Cy*Ax - Ay*Cx dy,
(2c) Cy = 1 + Integral Ay*Bx - By*Ax dy.
IDENTITIES.
(3a) Ax^2 + Bx^2 + Cx^2 = 1.
(3b) Ay^2 + By^2 + Cy^2 = 1.
(4a) (Ax*Ay + Bx*By + Cx*Cy)^2 + (d/dx Ax)^2 + (d/dx Bx)^2 + (d/dx Cx)^2 = 1.
(4b) (Ax*Ay + Bx*By + Cx*Cy)^2 + (d/dy Ay)^2 + (d/dy By)^2 + (d/dy Cy)^2 = 1.
(5a) Ax*(d/dx Ax) + Bx*(d/dx Bx) + Cx*(d/dx Cx) = 0.
(5b) Ay*(d/dy Ay) + By*(d/dy By) + Cy*(d/dy Cy) = 0.
(5c) Ax*(d/dy Ay) + Bx*(d/dy By) + Cx*(d/dy Cy) = 0.
(5d) Ay*(d/dx Ax) + By*(d/dx Bx) + Cy*(d/dx Cx) = 0.
(5e) Ax*(d/dy Ax) + Bx*(d/dy Bx) + Cx*(d/dy Cx) = 0.
(5f) Ay*(d/dx Ay) + By*(d/dx By) + Cy*(d/dx Cy) = 0.
RELATED FUNCTIONS.
(6a) SS(x*y) = Ax*Ay + Bx*By + Cx*Cy.
(6b) d/dx SS(x*y) = Ax*(d/dx Ay) + Bx*(d/dx By) + Cx*(d/dx Cy).
(6c) d/dy SS(x*y) = Ay*(d/dy Ax) + By*(d/dy Bx) + Cy*(d/dy Cx).
(7a) CC(x*y)^2 = (Bx*Cy - Cx*By)^2 + (Cx*Ay - Ax*Cy)^2 + (Ax*By - Bx*Ay)^2.
(7b) CC(x*y)^2 = (d/dx Ax)^2 + (d/dx Bx)^2 + (d/dx Cx)^2.
(7c) CC(x*y)^2 = (d/dy Ay)^2 + (d/dy By)^2 + (d/dy Cy)^2.
In the above, CC(x) and SS(x) are the e.g.f.s of A326551 and A326552 defined by
(8a) CC(x*y)^2 + SS(x*y)^2 = 1,
(8b) SS(x*y) = Integral CC(x*y) * (Integral CC(x*y) dy) dx,
(8c) CC(x*y) = 1 - Integral SS(x*y) * (Integral CC(x*y) dy) dx,
(8d) SS(x*y) = sin( Integral Integral CC(x*y) dx dy ),
(8e) CC(x*y) = cos( Integral Integral CC(x*y) dx dy ).
OTHER RELATIONS.
(9a) Ay = Ax*SS(x*y) - Bx*(d/dx Cx) + Cx*(d/dx Bx).
(9b) By = Bx*SS(x*y) - Cx*(d/dx Ax) + Ax*(d/dx Cx).
(9c) Cy = Cx*SS(x*y) - Ax*(d/dx Bx) + Bx*(d/dx Ax).
(9d) Ax = Ay*SS(x*y) - By*(d/dy Cy) + Cy*(d/dy By).
(9e) Bx = By*SS(x*y) - Cy*(d/dy Ay) + Ay*(d/dy Cy).
(9f) Cx = Cy*SS(x*y) - Ay*(d/dy By) + By*(d/dy Ay).
DERIVATIVES.
(10a) d/dx Ax = Bx*Cy - Cx*By.
(10b) d/dx Bx = Cx*Ay - Ax*Cy.
(10c) d/dx Cx = Ax*By - Bx*Ay.
(10d) d/dy Ay = By*Cx - Cy*Bx.
(10e) d/dy By = Cy*Ax - Ay*Cx.
(10f) d/dy Cy = Ay*Bx - By*Ax.
EXAMPLE
E.g.f.: C(x,y) = (2*x*y)/2! + (-4*x*y^3)/4! + (-160*x^3*y^3 + 6*x*y^5)/6! + (1344*x^3*y^5 - 8*x*y^7)/8! + (145152*x^5*y^5 - 5760*x^3*y^7 + 10*x*y^9)/10! + (-2534400*x^5*y^7 + 17600*x^3*y^9 - 12*x*y^11)/12! + (-551755776*x^7*y^7 + 20500480*x^5*y^9 - 43680*x^3*y^11 + 14*x*y^13)/14! + (16400384000*x^7*y^9 - 109025280*x^5*y^11 + 94080*x^3*y^13 - 16*x*y^15)/16! + (6006289203200*x^9*y^9 - 213971337216*x^7*y^11 + 441423360*x^5*y^13 - 182784*x^3*y^15 + 18*x*y^17)/18! + (-271368838840320*x^9*y^11 + 1750895247360*x^7*y^13 - 1472507904*x^5*y^15 + 328320*x^3*y^17 - 20*x*y^19)/20! + (-150055074904670208*x^11*y^11 + 5196968265646080*x^9*y^13 - 10481366827008*x^7*y^15 + 4247147520*x^5*y^17 - 554400*x^3*y^19 + 22*x*y^21)/22! + ...
such that
. C(x,y) = 0 + Integral A(x,y)*B(y,x) - B(x,y)*A(y,x) dx,
. C(y,x) = 1 + Integral A(y,x)*B(x,y) - B(y,x)*A(x,y) dy,
where A(x,y) and B(x,y) satisfy
. A(x,y)^2 + B(x,y)^2 + C(x,y)^2 = 1.
TRIANGLE.
This triangle of coefficients T(n,k) of x^(2*n-2*k+1)*y^(2*k+1)/(2*n+2)! in C(x,y) begins
2;
0, -4;
0, -160, 6;
0, 0, 1344, -8;
0, 0, 145152, -5760, 10;
0, 0, 0, -2534400, 17600, -12;
0, 0, 0, -551755776, 20500480, -43680, 14;
0, 0, 0, 0, 16400384000, -109025280, 94080, -16;
0, 0, 0, 0, 6006289203200, -213971337216, 441423360, -182784, 18;
0, 0, 0, 0, 0, -271368838840320, 1750895247360, -1472507904, 328320, -20;
0, 0, 0, 0, 0, -150055074904670208, 5196968265646080, -10481366827008, 4247147520, -554400, 22;
0, 0, 0, 0, 0, 0, 9574791098375602176, -60514176440205312, 49984638713856, -10935429120, 890560, -24;
0, 0, 0, 0, 0, 0, 7448871207078094438400, -252719117696793313280, 501704844897484800, -200297889792000, 25701561600, -1372800, 26; ...
RELATED FUNCTIONS.
A(x,y) = x + (-1*x^3 - 3*x*y^2)/3! + (1*x^5 - 30*x^3*y^2 + 5*x*y^4)/5! + (-1*x^7 + 315*x^5*y^2 + 525*x^3*y^4 - 7*x*y^6)/7! + (1*x^9 - 1260*x^7*y^2 + 18270*x^5*y^4 - 2940*x^3*y^6 + 9*x*y^8)/9! + (-1*x^11 + 3465*x^9*y^2 - 496650*x^7*y^4 - 695310*x^5*y^6 + 10395*x^3*y^8 - 11*x*y^10)/11! + (1*x^13 - 7722*x^11*y^2 + 4279275*x^9*y^4 - 52144092*x^7*y^6 + 7702695*x^5*y^8 - 28314*x^3*y^10 + 13*x*y^12)/13! + (-1*x^15 + 15015*x^13*y^2 - 22387365*x^11*y^4 + 2701093395*x^9*y^6 + 3472834365*x^7*y^8 - 49252203*x^5*y^10 + 65065*x^3*y^12 - 15*x*y^14)/15! + ...
such that
. A(x,y) = 0 + Integral B(x,y)*C(y,x) - C(x,y)*B(y,x) dx,
. A(y,x) = 0 + Integral B(y,x)*C(x,y) - C(y,x)*B(x,y) dy.
B(x,y) = 1 + (-1*x^2)/2! + (1*x^4)/4! + (-1*x^6 + 120*x^4*y^2)/6! + (1*x^8 - 672*x^6*y^2)/8! + (-1*x^10 + 2160*x^8*y^2 - 120960*x^6*y^4)/10! + (1*x^12 - 5280*x^10*y^2 + 1584000*x^8*y^4)/12! + (-1*x^14 + 10920*x^12*y^2 - 10250240*x^10*y^4 + 482786304*x^8*y^6)/14! + (1*x^16 - 20160*x^14*y^2 + 45427200*x^12*y^4 - 11480268800*x^10*y^6)/16! + ...
such that
. B(x,y) = 1 + Integral C(x,y)*A(y,x) - A(x,y)*C(y,x) dx,
. B(y,x) = 0 + Integral C(y,x)*A(x,y) - A(y,x)*C(x,y) dy.
CC(x) = 1 - 2*x^2/2!^2 + 56*x^4/4!^2 - 8336*x^6/6!^2 + 3985792*x^8/8!^2 - 4679517952*x^10/10!^2 + 11427218287616*x^12/12!^2 - 51793067942397952*x^14/14!^2 + 400951893341645930496*x^16/16!^2 + ... + A326551(n)*x^(2*n)/(2*n)!^2 + ...
such that
. CC(x*y) = sqrt( (Bx*Cy - Cx*By)^2 + (Cx*Ay - Ax*Cy)^2 + (Ax*By - Bx*Ay)^2 ).
SS(x) = x - 8*x^3/3!^2 + 576*x^5/5!^2 - 160768*x^7/7!^2 + 123535360*x^9/9!^2 - 212713734144*x^11/11!^2 + 716196297048064*x^13/13!^2 - 4280584942657732608*x^15/15!^2 + 42250703121584165486592*x^17/17!^2 + ... + A326552(n)*x^(2*n+1)/(2*n+1)!^2 + ...
such that SS(x*y) = Ax*Ay + Bx*By + Cx*Cy.
PROG
(PARI) {TCx(n, k) = my(Ax=x, Bx=1, Cx=x, Ay=y, By=y, Cy=1);
for(i=0, 2*n+1,
Ax = 0 + intformal( Bx*Cy - Cx*By, x) + O(x^(2*n+2));
Bx = 1 + intformal( Cx*Ay - Ax*Cy, x) + O(x^(2*n+2));
Cx = 0 + intformal( Ax*By - Bx*Ay, x) + O(x^(2*n+2));
Ay = 0 + intformal( By*Cx - Cy*Bx, y) + O(y^(2*n+2));
By = 0 + intformal( Cy*Ax - Ay*Cx, y) + O(y^(2*n+2));
Cy = 1 + intformal( Ay*Bx - By*Ax, y) + O(y^(2*n+2));
);
(2*n+2)! * polcoeff( polcoeff(Cx, 2*n-2*k+1, x), 2*k+1, y)}
for(n=0, 10, for(k=0, n, print1( TCx(n, k), ", ")); print(""))
Consider the e.g.f. C(x,y) = sqrt(1/2) * Sum_{n>=0} Sum_{k=0..2*n} T(n,k) * x^(2*n-k) * y^k / ((2*n-k)!*k!) and related functions S(x,y) and D(x,y), as defined in the Formula section. Sequence gives the triangular array of coefficients T(n,k) (n>=0, 0<=k<=2*n) of C(x,y).
+10
6
1, -1, -1, 0, 1, 0, 0, 1, 0, -1, 0, 8, 8, 0, -1, 0, 1, 0, -24, 0, 0, -24, 0, 1, 0, -1, 0, 48, 0, -576, -576, 0, 48, 0, -1, 0, 1, 0, -80, 0, 3200, 0, 0, 3200, 0, -80, 0, 1, 0, -1, 0, 120, 0, -10240, 0, 160768, 160768, 0, -10240, 0, 120, 0, -1, 0, 1, 0, -168, 0, 24960, 0, -1433600, 0, 0, -1433600, 0, 24960, 0, -168, 0, 1, 0, -1, 0, 224, 0, -51520, 0, 6723584, 0, -123535360, -123535360, 0, 6723584, 0, -51520, 0, 224, 0, -1, 0, 1, 0, -288, 0, 94976, 0, -22586368, 0, 1615675392, 0, 0, 1615675392, 0, -22586368, 0, 94976, 0, -288, 0, 1, 0
FORMULA
The e.g.f. Cx = C(x,y) and related functions Sx = S(x,y), Dx = D(x,y), Sy = S(y,x), Cy = C(y,x), and Dy = D(y,x) satisfy the following relations.
DEFINITION.
(1a) Sx = Integral Cx*Dy + Cy*Dx dx,
(1b) Cx = sqrt(1/2) - Integral Sx*Dy + Sy*Dx dx,
(1c) Dx = sqrt(1/2) - Integral Sx*Cy - Sy*Cx dx,
(2a) Sy = Integral Cy*Dx + Cx*Dy dy,
(2b) Cy = sqrt(1/2) - Integral Sy*Dx + Sx*Dy dy,
(2c) Dy = sqrt(1/2) - Integral Sy*Cx - Sx*Cy dy.
IDENTITIES.
(3a) Dx^2 + Cx^2 + Sx^2 = 1.
(3b) Dy^2 + Cy^2 + Sy^2 = 1.
(4a) Dx*(d/dx Dx) + Cx*(d/dx Cx) + Sx*(d/dx Sx) = 0.
(4b) Dy*(d/dy Dy) + Cy*(d/dy Cy) + Sy*(d/dy Sy) = 0.
(4c) Dy*(d/dx Dx) - Cy*(d/dx Cx) - Sy*(d/dx Sx) = 0.
(4d) Dx*(d/dy Dy) - Cx*(d/dy Cy) - Sx*(d/dy Sy) = 0.
(5a) (Dx*Dy - Cx*Cy - Sx*Sy)^2 + (d/dx Dx)^2 + (d/dx Cx)^2 + (d/dx Sx)^2 = 1.
(5b) (Dx*Dy - Cx*Cy - Sx*Sy)^2 + (d/dy Dy)^2 + (d/dy Cy)^2 + (d/dy Sy)^2 = 1.
RELATED FUNCTIONS.
(6a) SS(x*y) = Dx*Dy - Cx*Cy - Sx*Sy.
(6b) d/dx SS(x*y) = Dx*(d/dx Dy) - Cx*(d/dx Cy) - Sx*(d/dx Sy).
(6c) d/dy SS(x*y) = Dy*(d/dy Dx) - Cy*(d/dy Cx) - Sy*(d/dy Sx).
(7a) CC(x*y)^2 = (Cx*Dy + Cy*Dx)^2 + (Sx*Dy + Sy*Dx)^2 + (Sx*Cy - Sy*Cx)^2.
(7b) CC(x*y)^2 = (d/dx Dx)^2 + (d/dx Cx)^2 + (d/dx Sx)^2.
(7c) CC(x*y)^2 = (d/dy Dy)^2 + (d/dy Cy)^2 + (d/dy Sy)^2.
In the above, CC(x) and SS(x) are the e.g.f.s of A326551 and A326552 defined by
(8a) CC(x*y)^2 + SS(x*y)^2 = 1,
(8b) SS(x*y) = Integral CC(x*y) * (Integral CC(x*y) dy) dx,
(8c) CC(x*y) = 1 - Integral SS(x*y) * (Integral CC(x*y) dy) dx,
(8d) SS(x*y) = sin( Integral Integral CC(x*y) dx dy ),
(8e) CC(x*y) = cos( Integral Integral CC(x*y) dx dy ).
DERIVATIVES.
(9a) d/dx Sx = Cx*Dy + Cy*Dx.
(9b) d/dx Cx = -Sx*Dy - Sy*Dx.
(9c) d/dx Dx = -Sx*Cy + Sy*Cx.
(9d) d/dy Sy = Sy*Dx + Sx*Dy.
(9e) d/dy Cy = -Sy*Dx - Sx*Dy.
(9f) d/dy Dy = -Sy*Cx + Sx*Cy.
EXAMPLE
E.g.f.: C(x,y) = sqrt(1/2) * (1 + (-x^2/2! - x*y ) + ( x^4/4! + x*y^3/3! ) + (-x^6/6! + 8*x^4*y^2/(4!*2!) + 8*x^3*y^3/(3!*3!) - x*y^5/5! ) + ( x^8/8! - 24*x^6*y^2/(6!*2!) - 24*x^3*y^5/(3!*5!) + x*y^7/7! ) + (-x^10/10! + 48*x^8*y^2/(8!*2!) - 576*x^6*y^4/(6!*4!) - 576*x^5*y^5/(5!*5!) + 48*x^3*y^7/(3!*7!) - x*y^9/9! ) + ( x^12/12! - 80*x^10*y^2/(10!*2!) + 3200*x^8*y^4/(8!*4!) + 3200*x^5*y^7/(5!*7!) - 80*x^3*y^9/(3!*9!) + x*y^11/11! ) + (-x^14/14! + 120*x^12*y^2/(12!*2!) - 10240*x^10*y^4/(10!*4!) + 160768*x^8*y^6/(8!*6!) + 160768*x^7*y^7/(7!*7!) - 10240*x^5*y^9/(5!*9!) + 120*x^3*y^11/(3!*11!) - x*y^13/13! ) + ( x^16/16! - 168*x^14*y^2/(14!*2!) + 24960*x^12*y^4/(12!*4!) - 1433600*x^10*y^6/(10!*6!) - 1433600*x^7*y^9/(7!*9!) + 24960*x^5*y^11/(5!*11!) - 168*x^3*y^13/(3!*13!) + x*y^15/15! ) + (-x^18/18! + 224*x^16*y^2/(16!*2!) - 51520*x^14*y^4/(14!*4!) + 6723584*x^12*y^6/(12!*6!) - 123535360*x^10*y^8/(10!*8!) - 123535360*x^9*y^9/(9!*9!) + 6723584*x^7*y^11/(7!*11!) - 51520*x^5*y^13/(5!*13!) + 224*x^3*y^15/(3!*15!) - x*y^17/17! ) + ( x^20/20! - 288*x^18*y^2/(18!*2!) + 94976*x^16*y^4/(16!*4!) - 22586368*x^14*y^6/(14!*6!) + 1615675392*x^12*y^8/(12!*8!) + 1615675392*x^9*y^11/(9!*11!) - 22586368*x^7*y^13/(7!*13!) + 94976*x^5*y^15/(5!*15!) - 288*x^3*y^17/(3!*17!) + x*y^19/19! ) + ...).
This triangle of coefficients T(n,k) of x^(2*n-k)*y^k/((2*n-k)!*k!) in sqrt(2)*C(x,y) begins
1;
-1, -1, 0;
1, 0, 0, 1, 0;
-1, 0, 8, 8, 0, -1, 0;
1, 0, -24, 0, 0, -24, 0, 1, 0;
-1, 0, 48, 0, -576, -576, 0, 48, 0, -1, 0;
1, 0, -80, 0, 3200, 0, 0, 3200, 0, -80, 0, 1, 0;
-1, 0, 120, 0, -10240, 0, 160768, 160768, 0, -10240, 0, 120, 0, -1, 0;
1, 0, -168, 0, 24960, 0, -1433600, 0, 0, -1433600, 0, 24960, 0, -168, 0, 1, 0;
-1, 0, 224, 0, -51520, 0, 6723584, 0, -123535360, -123535360, 0, 6723584, 0, -51520, 0, 224, 0, -1, 0;
1, 0, -288, 0, 94976, 0, -22586368, 0, 1615675392, 0, 0, 1615675392, 0, -22586368, 0, 94976, 0, -288, 0, 1, 0;
-1, 0, 360, 0, -161280, 0, 61458432, 0, -10447847424, 0, 212713734144, 212713734144, 0, -10447847424, 0, 61458432, 0, -161280, 0, 360, 0, -1, 0;
1, 0, -440, 0, 257280, 0, -144420864, 0, 46282211328, 0, -3835832827904, 0, 0, -3835832827904, 0, 46282211328, 0, -144420864, 0, 257280, 0, -440, 0, 1, 0; ...
CENTRAL TERMS.
The central terms are found in 1 - SS(x*y) = 1 - Dx*Dy + Cx*Cy + Sx*Sy:
[1, -1, 0, 8, 0, -576, 0, 160768, 0, -123535360, 0, 212713734144, 0, -716196297048064, 0, 4280584942657732608, ...] (cf. A326552).
RELATED SERIES.
S(x,y) = x + (-x^3/3! - x*y^2/2! ) + ( x^5/5! - 3*x^3*y^2/(3!*2!) + x*y^4/4! ) + (-x^7/7! + 15*x^5*y^2/(5!*2!) + 15*x^3*y^4/(3!*4!) - x*y^6/6! ) + ( x^9/9! - 35*x^7*y^2/(7!*2!) + 145*x^5*y^4/(5!*4!) - 35*x^3*y^6/(3!*6!) + x*y^8/8! ) + (-x^11/11! + 63*x^9*y^2/(9!*2!) - 1505*x^7*y^4/(7!*4!) - 1505*x^5*y^6/(5!*6!) + 63*x^3*y^8/(3!*8!) - x*y^10/10! ) + ( x^13/13! - 99*x^11*y^2/(11!*2!) + 5985*x^9*y^4/(9!*4!) - 30387*x^7*y^6/(7!*6!) + 5985*x^5*y^8/(5!*8!) - 99*x^3*y^10/(3!*10!) + x*y^12/12! ) + (-x^15/15! + 143*x^13*y^2/(13!*2!) - 16401*x^11*y^4/(11!*4!) + 539679*x^9*y^6/(9!*6!) + 539679*x^7*y^8/(7!*8!) - 16401*x^5*y^10/(5!*10!) + 143*x^3*y^12/(3!*12!) - x*y^14/14! ) + ...
D(x,y) = sqrt(1/2) * (1 + (-x^2/2! + x*y ) + ( x^4/4! - x*y^3/3! ) + (-x^6/6! + 8*x^4*y^2/(4!*2!) - 8*x^3*y^3/(3!*3!) + x*y^5/5! ) + ( x^8/8! - 24*x^6*y^2/(6!*2!) + 24*x^3*y^5/(3!*5!) - x*y^7/7! ) + (-x^10/10! + 48*x^8*y^2/(8!*2!) - 576*x^6*y^4/(6!*4!) + 576*x^5*y^5/(5!*5!) - 48*x^3*y^7/(3!*7!) + x*y^9/9! ) + ( x^12/12! - 80*x^10*y^2/(10!*2!) + 3200*x^8*y^4/(8!*4!) - 3200*x^5*y^7/(5!*7!) + 80*x^3*y^9/(3!*9!) - x*y^11/11! ) + (-x^14/14! + 120*x^12*y^2/(12!*2!) - 10240*x^10*y^4/(10!*4!) + 160768*x^8*y^6/(8!*6!) - 160768*x^7*y^7/(7!*7!) + 10240*x^5*y^9/(5!*9!) - 120*x^3*y^11/(3!*11!) + x*y^13/13! ) + ...).
SS(x*y) = (x*y) - 8*(x*y)^3/3!^2 + 576*(x*y)^5/5!^2 - 160768*(x*y)^7/7!^2 + 123535360*(x*y)^9/9!^2 - 212713734144*(x*y)^11/11!^2 + 716196297048064*(x*y)^13/13!^2 - 4280584942657732608*(x*y)^15/15!^2 + 42250703121584165486592*(x*y)^17/17!^2 - 651154631135458759089848320*(x*y)^19/19!^2 + 14983590319172065236171175755776*(x*y)^21/21!^2 + ... + A326552(n)*(x*y)^(2*n-1)/(2*n-1)! + ...
such that
SS(x*y) = Dx*Dy - Cx*Cy - Sx*Sy.
CC(x*y) = 1 - 2*(x*y)^2/2!^2 + 56*(x*y)^4/4!^2 - 8336*(x*y)^6/6!^2 + 3985792*(x*y)^8/8!^2 - 4679517952*(x*y)^10/10!^2 + 11427218287616*(x*y)^12/12!^2 - 51793067942397952*(x*y)^14/14!^2 + 400951893341645930496*(x*y)^16/16!^2 - 4975999084909976839454720*(x*y)^18/18!^2 + 94178912073481319162642169856*(x*y)^20/20!^2 -+ ... + A326551(n)*(x*y)^(2*n)/(2*n)! + ...
such that
CC(x*y)^2 = (Cx*Dy + Cy*Dx)^2 + (Sx*Dy + Sy*Dx)^2 + (Sx*Cy - Sy*Cx)^2,
and CC(x*Y)^2 + SS(x*y)^2 = 1.
PROG
(PARI)
{TCx(n, k) = my(Cx=1, Sx=x, Dx=1, Cy=1, Sy=y, Dy=1);
for(i=0, 2*n+1,
Sx = intformal( Cx*Dy + Cy*Dx, x) + O(x^(2*n+2));
Cx = sqrt(1/2) - intformal( Sx*Dy + Sy*Dx, x);
Dx = sqrt(1/2) - intformal( Sx*Cy - Sy*Cx, x);
Sy = intformal( Cy*Dx + Cx*Dy, y) + O(y^(2*n+2));
Cy = sqrt(1/2) - intformal( Sy*Dx + Sx*Dy, y);
Dy = sqrt(1/2) - intformal( Sy*Cx - Sx*Cy, y);
);
round( (2*n-k)!*k! * polcoeff( polcoeff(sqrt(2)*Cx, 2*n-k, x), k, y) )}
for(n=0, 10, for(k=0, 2*n, print1( TCx(n, k), ", ")); print(""))
Consider the e.g.f. D(x,y) = sqrt(1/2) * Sum_{n>=0} Sum_{k=0..2*n} T(n,k) * x^(2*n-k) * y^k / ((2*n-k)!*k!) and related functions S(x,y) and C(x,y), as defined in the Formula section. Sequence gives the triangular array of coefficients T(n,k) (n>=0, 0<=k<=2*n) of D(x,y).
+10
6
1, -1, 1, 0, 1, 0, 0, -1, 0, -1, 0, 8, -8, 0, 1, 0, 1, 0, -24, 0, 0, 24, 0, -1, 0, -1, 0, 48, 0, -576, 576, 0, -48, 0, 1, 0, 1, 0, -80, 0, 3200, 0, 0, -3200, 0, 80, 0, -1, 0, -1, 0, 120, 0, -10240, 0, 160768, -160768, 0, 10240, 0, -120, 0, 1, 0, 1, 0, -168, 0, 24960, 0, -1433600, 0, 0, 1433600, 0, -24960, 0, 168, 0, -1, 0, -1, 0, 224, 0, -51520, 0, 6723584, 0, -123535360, 123535360, 0, -6723584, 0, 51520, 0, -224, 0, 1, 0, 1, 0, -288, 0, 94976, 0, -22586368, 0, 1615675392, 0, 0, -1615675392, 0, 22586368, 0, -94976, 0, 288, 0, -1, 0
FORMULA
The e.g.f. Dx = D(x,y) and related functions Sx = S(x,y), Cx = C(x,y), Sy = S(y,x), Cy = C(y,x), and Dy = D(y,x) satisfy the following relations.
DEFINITION.
(1a) Sx = Integral Cx*Dy + Cy*Dx dx,
(1b) Cx = sqrt(1/2) - Integral Sx*Dy + Sy*Dx dx,
(1c) Dx = sqrt(1/2) - Integral Sx*Cy - Sy*Cx dx,
(2a) Sy = Integral Cy*Dx + Cx*Dy dy,
(2b) Cy = sqrt(1/2) - Integral Sy*Dx + Sx*Dy dy,
(2c) Dy = sqrt(1/2) - Integral Sy*Cx - Sx*Cy dy.
IDENTITIES.
(3a) Dx^2 + Cx^2 + Sx^2 = 1.
(3b) Dy^2 + Cy^2 + Sy^2 = 1.
(4a) Dx*(d/dx Dx) + Cx*(d/dx Cx) + Sx*(d/dx Sx) = 0.
(4b) Dy*(d/dy Dy) + Cy*(d/dy Cy) + Sy*(d/dy Sy) = 0.
(4c) Dy*(d/dx Dx) - Cy*(d/dx Cx) - Sy*(d/dx Sx) = 0.
(4d) Dx*(d/dy Dy) - Cx*(d/dy Cy) - Sx*(d/dy Sy) = 0.
(5a) (Dx*Dy - Cx*Cy - Sx*Sy)^2 + (d/dx Dx)^2 + (d/dx Cx)^2 + (d/dx Sx)^2 = 1.
(5b) (Dx*Dy - Cx*Cy - Sx*Sy)^2 + (d/dy Dy)^2 + (d/dy Cy)^2 + (d/dy Sy)^2 = 1.
RELATED FUNCTIONS.
(6a) SS(x*y) = Dx*Dy - Cx*Cy - Sx*Sy.
(6b) d/dx SS(x*y) = Dx*(d/dx Dy) - Cx*(d/dx Cy) - Sx*(d/dx Sy).
(6c) d/dy SS(x*y) = Dy*(d/dy Dx) - Cy*(d/dy Cx) - Sy*(d/dy Sx).
(7a) CC(x*y)^2 = (Cx*Dy + Cy*Dx)^2 + (Sx*Dy + Sy*Dx)^2 + (Sx*Cy - Sy*Cx)^2.
(7b) CC(x*y)^2 = (d/dx Dx)^2 + (d/dx Cx)^2 + (d/dx Sx)^2.
(7c) CC(x*y)^2 = (d/dy Dy)^2 + (d/dy Cy)^2 + (d/dy Sy)^2.
In the above, CC(x) and SS(x) are the e.g.f.s of A326551 and A326552 defined by
(8a) CC(x*y)^2 + SS(x*y)^2 = 1,
(8b) SS(x*y) = Integral CC(x*y) * (Integral CC(x*y) dy) dx,
(8c) CC(x*y) = 1 - Integral SS(x*y) * (Integral CC(x*y) dy) dx,
(8d) SS(x*y) = sin( Integral Integral CC(x*y) dx dy ),
(8e) CC(x*y) = cos( Integral Integral CC(x*y) dx dy ).
DERIVATIVES.
(9a) d/dx Sx = Cx*Dy + Cy*Dx.
(9b) d/dx Cx = -Sx*Dy - Sy*Dx.
(9c) d/dx Dx = -Sx*Cy + Sy*Cx.
(9d) d/dy Sy = Sy*Dx + Sx*Dy.
(9e) d/dy Cy = -Sy*Dx - Sx*Dy.
(9f) d/dy Dy = -Sy*Cx + Sx*Cy.
EXAMPLE
E.g.f.: D(x,y) = sqrt(1/2) * (1 + (-x^2/2! + x*y ) + ( x^4/4! - x*y^3/3! ) + (-x^6/6! + 8*x^4*y^2/(4!*2!) - 8*x^3*y^3/(3!*3!) + x*y^5/5! ) + ( x^8/8! - 24*x^6*y^2/(6!*2!) + 24*x^3*y^5/(3!*5!) - x*y^7/7! ) + (-x^10/10! + 48*x^8*y^2/(8!*2!) - 576*x^6*y^4/(6!*4!) + 576*x^5*y^5/(5!*5!) - 48*x^3*y^7/(3!*7!) + x*y^9/9! ) + ( x^12/12! - 80*x^10*y^2/(10!*2!) + 3200*x^8*y^4/(8!*4!) - 3200*x^5*y^7/(5!*7!) + 80*x^3*y^9/(3!*9!) - x*y^11/11! ) + (-x^14/14! + 120*x^12*y^2/(12!*2!) - 10240*x^10*y^4/(10!*4!) + 160768*x^8*y^6/(8!*6!) - 160768*x^7*y^7/(7!*7!) + 10240*x^5*y^9/(5!*9!) - 120*x^3*y^11/(3!*11!) + x*y^13/13! ) + ( x^16/16! - 168*x^14*y^2/(14!*2!) + 24960*x^12*y^4/(12!*4!) - 1433600*x^10*y^6/(10!*6!) + 1433600*x^7*y^9/(7!*9!) - 24960*x^5*y^11/(5!*11!) + 168*x^3*y^13/(3!*13!) - x*y^15/15! ) + (-1*x^18/18! + 224*x^16*y^2/(16!*2!) - 51520*x^14*y^4/(14!*4!) + 6723584*x^12*y^6/(12!*6!) - 123535360*x^10*y^8/(10!*8!) + 123535360*x^9*y^9/(9!*9!) - 6723584*x^7*y^11/(7!*11!) + 51520*x^5*y^13/(5!*13!) - 224*x^3*y^15/(3!*15!) + x*y^17/17! ) + ( x^20/20! - 288*x^18*y^2/(18!*2!) + 94976*x^16*y^4/(16!*4!) - 22586368*x^14*y^6/(14!*6!) + 1615675392*x^12*y^8/(12!*8!) - 1615675392*x^9*y^11/(9!*11!) + 22586368*x^7*y^13/(7!*13!) - 94976*x^5*y^15/(5!*15!) + 288*x^3*y^17/(3!*17!) - x*y^19/19! ) + ...).
This triangle of coefficients T(n,k) of x^(2*n-k)*y^k/((2*n-k)!*k!) in sqrt(2)*D(x,y) begins
1;
-1, 1, 0;
1, 0, 0, -1, 0;
-1, 0, 8, -8, 0, 1, 0;
1, 0, -24, 0, 0, 24, 0, -1, 0;
-1, 0, 48, 0, -576, 576, 0, -48, 0, 1, 0;
1, 0, -80, 0, 3200, 0, 0, -3200, 0, 80, 0, -1, 0;
-1, 0, 120, 0, -10240, 0, 160768, -160768, 0, 10240, 0, -120, 0, 1, 0;
1, 0, -168, 0, 24960, 0, -1433600, 0, 0, 1433600, 0, -24960, 0, 168, 0, -1, 0;
-1, 0, 224, 0, -51520, 0, 6723584, 0, -123535360, 123535360, 0, -6723584, 0, 51520, 0, -224, 0, 1, 0;
1, 0, -288, 0, 94976, 0, -22586368, 0, 1615675392, 0, 0, -1615675392, 0, 22586368, 0, -94976, 0, 288, 0, -1, 0;
-1, 0, 360, 0, -161280, 0, 61458432, 0, -10447847424, 0, 212713734144, -212713734144, 0, 10447847424, 0, -61458432, 0, 161280, 0, -360, 0, 1, 0;
1, 0, -440, 0, 257280, 0, -144420864, 0, 46282211328, 0, -3835832827904, 0, 0, 3835832827904, 0, -46282211328, 0, 144420864, 0, -257280, 0, 440, 0, -1, 0; ...
CENTRAL TERMS.
The central terms are found in 1 + SS(x*y) = 1 + Dx*Dy - Cx*Cy - Sx*Sy:
[1, 1, 0, -8, 0, 576, 0, -160768, 0, 123535360, 0, -212713734144, 0, 716196297048064, 0, -4280584942657732608, ...] (cf. A326552).
RELATED SERIES.
S(x,y) = x + (-x^3/3! - x*y^2/2! ) + ( x^5/5! - 3*x^3*y^2/(3!*2!) + x*y^4/4! ) + (-x^7/7! + 15*x^5*y^2/(5!*2!) + 15*x^3*y^4/(3!*4!) - x*y^6/6! ) + ( x^9/9! - 35*x^7*y^2/(7!*2!) + 145*x^5*y^4/(5!*4!) - 35*x^3*y^6/(3!*6!) + x*y^8/8! ) + (-x^11/11! + 63*x^9*y^2/(9!*2!) - 1505*x^7*y^4/(7!*4!) - 1505*x^5*y^6/(5!*6!) + 63*x^3*y^8/(3!*8!) - x*y^10/10! ) + ( x^13/13! - 99*x^11*y^2/(11!*2!) + 5985*x^9*y^4/(9!*4!) - 30387*x^7*y^6/(7!*6!) + 5985*x^5*y^8/(5!*8!) - 99*x^3*y^10/(3!*10!) + x*y^12/12! ) + (-x^15/15! + 143*x^13*y^2/(13!*2!) - 16401*x^11*y^4/(11!*4!) + 539679*x^9*y^6/(9!*6!) + 539679*x^7*y^8/(7!*8!) - 16401*x^5*y^10/(5!*10!) + 143*x^3*y^12/(3!*12!) - x*y^14/14! ) + ...
C(x,y) = sqrt(1/2) * (1 + (-x^2/2! - x*y ) + ( x^4/4! + x*y^3/3! ) + (-x^6/6! + 8*x^4*y^2/(4!*2!) + 8*x^3*y^3/(3!*3!) - x*y^5/5! ) + ( x^8/8! - 24*x^6*y^2/(6!*2!) - 24*x^3*y^5/(3!*5!) + x*y^7/7! ) + (-x^10/10! + 48*x^8*y^2/(8!*2!) - 576*x^6*y^4/(6!*4!) - 576*x^5*y^5/(5!*5!) + 48*x^3*y^7/(3!*7!) - x*y^9/9! ) + ( x^12/12! - 80*x^10*y^2/(10!*2!) + 3200*x^8*y^4/(8!*4!) + 3200*x^5*y^7/(5!*7!) - 80*x^3*y^9/(3!*9!) + x*y^11/11! ) + (-x^14/14! + 120*x^12*y^2/(12!*2!) - 10240*x^10*y^4/(10!*4!) + 160768*x^8*y^6/(8!*6!) + 160768*x^7*y^7/(7!*7!) - 10240*x^5*y^9/(5!*9!) + 120*x^3*y^11/(3!*11!) - x*y^13/13! ) + ...).
SS(x*y) = (x*y) - 8*(x*y)^3/3!^2 + 576*(x*y)^5/5!^2 - 160768*(x*y)^7/7!^2 + 123535360*(x*y)^9/9!^2 - 212713734144*(x*y)^11/11!^2 + 716196297048064*(x*y)^13/13!^2 - 4280584942657732608*(x*y)^15/15!^2 + 42250703121584165486592*(x*y)^17/17!^2 - 651154631135458759089848320*(x*y)^19/19!^2 + 14983590319172065236171175755776*(x*y)^21/21!^2 + ... + A326552(n)*(x*y)^(2*n-1)/(2*n-1)! + ...
such that
SS(x*y) = Dx*Dy - Cx*Cy - Sx*Sy.
CC(x*y) = 1 - 2*(x*y)^2/2!^2 + 56*(x*y)^4/4!^2 - 8336*(x*y)^6/6!^2 + 3985792*(x*y)^8/8!^2 - 4679517952*(x*y)^10/10!^2 + 11427218287616*(x*y)^12/12!^2 - 51793067942397952*(x*y)^14/14!^2 + 400951893341645930496*(x*y)^16/16!^2 - 4975999084909976839454720*(x*y)^18/18!^2 + 94178912073481319162642169856*(x*y)^20/20!^2 -+ ... + A326551(n)*(x*y)^(2*n)/(2*n)! + ...
such that
CC(x*y)^2 = (Cx*Dy + Cy*Dx)^2 + (Sx*Dy + Sy*Dx)^2 + (Sx*Cy - Sy*Cx)^2,
and CC(x*Y)^2 + SS(x*y)^2 = 1.
PROG
(PARI)
{TDx(n, k) = my(Cx=1, Sx=x, Dx=1, Cy=1, Sy=y, Dy=1);
for(i=0, 2*n+1,
Sx = intformal( Cx*Dy + Cy*Dx, x) + O(x^(2*n+2));
Cx = sqrt(1/2) - intformal( Sx*Dy + Sy*Dx, x);
Dx = sqrt(1/2) - intformal( Sx*Cy - Sy*Cx, x);
Sy = intformal( Cy*Dx + Cx*Dy, y) + O(y^(2*n+2));
Cy = sqrt(1/2) - intformal( Sy*Dx + Sx*Dy, y);
Dy = sqrt(1/2) - intformal( Sy*Cx - Sx*Cy, y);
);
round( (2*n-k)!*k! * polcoeff( polcoeff(sqrt(2)*Dx, 2*n-k, x), k, y) )}
for(n=0, 10, for(k=0, 2*n, print1( TDx(n, k), ", ")); print(""))
E.g.f. C(x), where C(x*y) + S(x*y) = exp( Integral Integral C(x*y) dx dy ) such that C(x)^2 - S(x)^2 = 1.
+10
4
1, 2, 56, 8336, 3985792, 4679517952, 11427218287616, 51793067942397952, 400951893341645930496, 4975999084909976839454720, 94178912073481319162642169856, 2610878440961060713599511173791744, 102545703927828194073741484514193965056, 5548919569628098800740786379865766154469376, 403949193167852851803947801218003477783686152192
FORMULA
E.g.f. C(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!^2, where series C(x) and related series S(x) satisfy the following relations.
(1.a) C(x)^2 - S(x)^2 = 1.
(1.b) C'(x)/S(x) = S'(x)/C(x) = 1/x * Integral C(x) dx.
(2.a) S(x) = Integral C(x)/x * (Integral C(x) dx) dx.
(2.b) C(x) = 1 + Integral S(x)/x * (Integral C(x) dx) dx.
(3.a) C(x) + S(x) = exp( Integral 1/x * (Integral C(x) dx) dx ).
(3.b) C(x) = cosh( Integral 1/x * (Integral C(x) dx) dx ).
(3.c) S(x) = sinh( Integral 1/x * (Integral C(x) dx) dx ).
Integration.
(4.a) S(x*y) = Integral C(x*y) * (Integral C(x*y) dy) dx.
(4.b) C(x*y) = 1 + Integral S(x*y) * (Integral C(x*y) dy) dx.
(4.c) S(x*y) = Integral C(x*y) * (Integral C(x*y) dx) dy.
(4.d) C(x*y) = 1 + Integral S(x*y) * (Integral C(x*y) dx) dy.
Exponential.
(5.a) C(x*y) + S(x*y) = exp( Integral Integral C(x*y) dx dy ).
(5.b) C(x*y) = cosh( Integral Integral C(x*y) dx dy ).
(5.c) S(x*y) = sinh( Integral Integral C(x*y) dx dy ).
Derivatives.
(6.a) d/dx S(x*y) = C(x*y) * Integral C(x*y) dy.
(6.b) d/dx C(x*y) = S(x*y) * Integral C(x*y) dy.
(6.c) d/dy S(x*y) = C(x*y) * Integral C(x*y) dx.
(6.d) d/dy C(x*y) = S(x*y) * Integral C(x*y) dx.
EXAMPLE
E.g.f. C(x) = 1 + 2*x^2/2!^2 + 56*x^4/4!^2 + 8336*x^6/6!^2 + 3985792*x^8/8!^2 + 4679517952*x^10/10!^2 + 11427218287616*x^12/12!^2 + 51793067942397952*x^14/14!^2 + 400951893341645930496*x^16/16!^2 + 4975999084909976839454720*x^18/18!^2 + 94178912073481319162642169856*x^20/20!^2 + ...
where C(x) = cosh( Integral 1/x * (Integral C(x) dx) dx ),
also, C(x*y) = cosh( Integral Integral C(x*y) dx dy ).
RELATED SERIES.
S(x) = x + 8*x^3/3!^2 + 576*x^5/5!^2 + 160768*x^7/7!^2 + 123535360*x^9/9!^2 + 212713734144*x^11/11!^2 + 716196297048064*x^13/13!^2 + 4280584942657732608*x^15/15!^2 + 42250703121584165486592*x^17/17!^2 + 651154631135458759089848320*x^19/19!^2 + 14983590319172065236171175755776*x^21/21!^2 + ...
where S(x) = sinh( Integral 1/x * (Integral C(x) dx) dx ),
also, S(x*y) = sinh( Integral Integral C(x*y) dx dy ).
SPECIFIC VALUES.
At x = 1/2,
C(1/2) = 1.13133757946411922642102833324416139...
S(1/2) = 0.52907912329606456055608764850290077...
log(C(1/2) + S(1/2)) = 0.50706859662590456104854330721421537...
At x = 1,
C(1) = 1.61616724447561044622618032294959193...
S(1) = 1.26964426597212165112687564431552303...
log(C(1) + S(1)) = 1.05980614652360497313310791544203867...
At x = 2,
C(2) = 7.0181980831554020705059330009720760...
S(2) = 6.9465894030384550946994132182413166...
log(C(2) + S(2)) = 2.636538981679765615420983831302958...
At x = 3, the power series for C(x) and S(x) diverge.
PROG
(PARI) {a(n) = my(C=1, S=x); for(i=1, 2*n,
S = intformal( C/x * intformal( C +x*O(x^(2*n)) ) );
C = 1 + intformal( S/x * intformal( C +x*O(x^(2*n)) ) ); ); (2*n)!^2*polcoeff(C, 2*n)}
for(n=0, 30, print1(a(n), ", "))
Search completed in 0.014 seconds
|