[go: up one dir, main page]

login
Search: a322329 -id:a322329
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of nondecreasing Motzkin paths of length n.
+10
2
1, 1, 2, 4, 9, 21, 49, 115, 269, 630, 1474, 3450, 8073, 18893, 44212, 103465, 242125, 566617, 1325982, 3103035, 7261648, 16993545, 39767898, 93063924, 217786044, 509657890, 1192689641, 2791104828, 6531679192, 15285285161, 35770272112, 83708766611, 195893326791
OFFSET
0,3
LINKS
R. Flórez and J. L. Ramírez, Some enumerations on non-decreasing Motzkin paths, Australasian Journal of Combinatorics, 72(1) (2018), 138-154.
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) + a(n-5), a(0)=1, a(1)=1, a(2)=2, a(3)=4, a(4)=9.
G.f.: (x^3 - 2*x^2 - x + 1)/(1 - 2*x - 2*x^2 + 3*x^3 - x^5).
EXAMPLE
For n=6 we have 49 paths. Among the A001006(6) = 51 Motzkin paths, the following two paths are not nondecreasing Motzkin paths: UHUDDH and UUDHDH.
MATHEMATICA
LinearRecurrence[{2, 2, -3, 0, 1}, {1, 1, 2, 4, 9}, 40] (* Amiram Eldar, Dec 03 2018 *)
CROSSREFS
Column k=0 of A322329.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
Triangle read by rows: T(n,k) is the number of nondecreasing Dyck prefixes (i.e., left factors of nondecreasing Dyck paths) of length n and final height k (0 <= k <= n).
+10
0
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 1, 5, 0, 9, 0, 5, 0, 1, 0, 13, 0, 14, 0, 6, 0, 1, 13, 0, 26, 0, 20, 0, 7, 0, 1, 0, 34, 0, 45, 0, 27, 0, 8, 0, 1, 34, 0, 73, 0, 71, 0, 35, 0, 9, 0, 1, 0, 89, 0, 137, 0, 105, 0, 44, 0, 10, 0, 1, 89, 0, 201, 0, 234, 0, 148, 0, 54, 0, 11, 0, 1, 0, 233, 0, 402, 0, 373, 0, 201, 0, 65, 0, 12, 0, 1, 233, 0, 546, 0, 733, 0, 564, 0, 265, 0, 77, 0, 13, 0, 1, 0, 610, 0, 1149, 0, 1245, 0, 818, 0, 341, 0, 90, 0, 14, 0, 1
OFFSET
0,8
LINKS
R. Flórez and J. L. Ramírez, Some enumerations on non-decreasing Motzkin paths, Australasian Journal of Combinatorics, 72(1) (2018), 138-154.
FORMULA
Riordan array: ((1 - 2*x^2)/(1 - 3*x^2 + x^4), (x*(1-x^2))/(1 - 2*x^2)).
EXAMPLE
Triangle begins:
1;
0, 1;
1, 0, 1;
0, 2, 0, 1;
2, 0, 3, 0, 1;
0, 5, 0, 4, 0, 1;
5, 0, 9, 0, 5, 0, 1;
0, 13, 0, 14, 0, 6, 0, 1;
13, 0, 26, 0, 20, 0, 7, 0, 1;
0, 34, 0, 45, 0, 27, 0, 8, 0, 1;
34, 0, 73, 0, 71, 0, 35, 0, 9, 0, 1;
0, 89, 0, 137, 0, 105, 0, 44, 0, 10, 0, 1;
89, 0, 201, 0, 234, 0, 148, 0, 54, 0, 11, 0, 1;
0, 233, 0, 402, 0, 373, 0, 201, 0, 65, 0, 12, 0, 1;
...
CROSSREFS
Columns k=0, 1 give A001519. Column k=2 gives A061667.
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved

Search completed in 0.007 seconds