[go: up one dir, main page]

login
Search: a320346 -id:a320346
     Sort: relevance | references | number | modified | created      Format: long | short | data
Array read by antidiagonals downwards: A(n,m) = number of set partitions of [2n] into 2-element subsets {i, i+k} with 1 <= k <= m.
+0
5
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 7, 5, 1, 1, 3, 12, 16, 8, 1, 1, 3, 15, 35, 38, 13, 1, 1, 3, 15, 63, 105, 89, 21, 1, 1, 3, 15, 90, 226, 329, 209, 34, 1, 1, 3, 15, 105, 417, 841, 1014, 491, 55, 1, 1, 3, 15, 105, 645, 1787, 3251, 3116, 1153, 89, 1
OFFSET
1,5
FORMULA
A(n,m) = A001147(n) = A104443(n,2) for m >= 2n - 1.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 3, 3, 3, 3, 3, 3, ...
1, 3, 7, 12, 15, 15, 15, 15, 15, ...
1, 5, 16, 35, 63, 90, 105, 105, 105, ...
1, 8, 38, 105, 226, 417, 645, 840, 945, ...
1, 13, 89, 329, 841, 1787, 3348, 5445, 7665, ...
1, 21, 209, 1014, 3251, 7938, 16717, 31647, 53250, ...
1, 34, 491, 3116, 12483, 36500, 86311, 180560, 344403, ...
1, 55, 1153, 9610, 47481, 167631, 459803, 1062435, 2211181, ...
...
CROSSREFS
Main diagonal is A014307.
Columns 1..4 are A000012, A000045(n+1), A052967, A320346.
KEYWORD
nonn,tabl
AUTHOR
Peter Dolland, Feb 03 2023
STATUS
approved

Search completed in 0.009 seconds