[go: up one dir, main page]

login
Search: a318799 -id:a318799
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number A(n,k) of rooted trees with n nodes such that no more than k subtrees extending from the same node have the same number of nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+10
13
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 3, 3, 0, 0, 1, 1, 2, 4, 7, 6, 0, 0, 1, 1, 2, 4, 8, 15, 12, 0, 0, 1, 1, 2, 4, 9, 18, 34, 25, 0, 0, 1, 1, 2, 4, 9, 19, 43, 79, 51, 0, 0, 1, 1, 2, 4, 9, 20, 46, 102, 190, 111, 0, 0, 1, 1, 2, 4, 9, 20, 47, 110, 250, 457, 240, 0
OFFSET
0,19
LINKS
FORMULA
A(n,k) = Sum_{j=0..k} A318754(n,j) for n > 0.
A(n,n+j) = A000081(n) for j >= -1.
EXAMPLE
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 2, 3, 4, 4, 4, 4, 4, 4, ...
0, 3, 7, 8, 9, 9, 9, 9, 9, ...
0, 6, 15, 18, 19, 20, 20, 20, 20, ...
0, 12, 34, 43, 46, 47, 48, 48, 48, ...
0, 25, 79, 102, 110, 113, 114, 115, 115, ...
MAPLE
g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(A(i, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i))))
end:
A:= (n, k)-> g(n-1$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
g[n_, i_, k_] := g[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j]*g[n - i*j, i - 1, k], {j, 0, Min[k, n/i]}]]];
A[n_, k_] := g[n - 1, n - 1, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 27 2019, after Alois P. Heinz *)
CROSSREFS
Rows n=0-2 give: A000004, A000012, A057427.
Main diagonal gives A000081.
Cf. A318754.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 02 2018
STATUS
approved

Search completed in 0.007 seconds