Displaying 1-9 of 9 results found.
page
1
Number of sets of nonempty subsets of {1,...,n} with intersection {}.
+10
9
1, 1, 3, 91, 31827, 2147158387, 9223372011085950171, 170141183460469231602560095290109272523, 57896044618658097711785492504343953923912733397452774312538303978325772978595
FORMULA
a(n) = A318130(n) - 2^(2^(n - 1) - 1).
EXAMPLE
The a(2) = 3 sets of sets are {}, {{1},{2}}, {{1},{2},{1,2}}.
MATHEMATICA
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]], Or[#=={}, Intersection@@#=={}]&]], {n, 0, 4}]
Number of non-isomorphic sets of finite (possibly empty) sets with union {1,2,...,n} and intersection {}.
+10
5
1, 1, 6, 60, 3836, 37325360, 25626412263611792, 67516342973185974276922865448446208, 2871827610052485009904013737758920847534777143951264797898686184985092096
EXAMPLE
Non-isomorphic representatives of the a(2) = 6 sets of sets:
{{1},{2}}
{{},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
MATHEMATICA
sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]], sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]], i}, {i, Length[Union@@m]}]], First[Sort[sysnorm[m, 1]]]]; sysnorm[m_, aft_]:=If[Length[Union@@m]<=aft, {m}, With[{mx=Table[Count[m, i, {2}], {i, Select[Union@@m, #>=aft&]}]}, Union@@(sysnorm[#, aft+1]&/@Union[Table[Map[Sort, m/.{par+aft-1->aft, aft->par+aft-1}, {0, 1}], {par, First/@Position[mx, Max[mx]]}]])]];
Table[Length[Union[sysnorm/@Select[Subsets[Subsets[Range[n]]], And[Union@@#===Range[n], Intersection@@#=={}]&]]], {n, 4}]
Number of non-isomorphic set-systems (finite sets of finite nonempty sets) with union {1,2,...,n} and intersection {}.
+10
5
1, 0, 2, 26, 1884, 18660728, 12813206113141264, 33758171486592987125648226573752576, 1435913805026242504952006868879460423733630400489039411798068453617852416
EXAMPLE
Non-isomorphic representatives of the a(3) = 26 set-systems:
{{1},{2,3}}
{{1},{2},{3}}
{{1},{2},{1,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2}}
{{1},{2},{3},{1,2,3}}
{{1},{2},{1,2},{1,3}}
{{1},{2},{1,3},{2,3}}
{{1},{2},{1,2},{1,2,3}}
{{1},{2},{1,3},{1,2,3}}
{{1},{1,2},{1,3},{2,3}}
{{1},{1,2},{2,3},{1,2,3}}
{{1},{2},{3},{1,2},{1,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
{{1},{2},{3},{1,2},{1,2,3}}
{{1},{2},{1,2},{1,3},{2,3}}
{{1},{2},{1,2},{1,3},{1,2,3}}
{{1},{2},{1,3},{2,3},{1,2,3}}
{{1},{1,2},{1,3},{2,3},{1,2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{1,2,3}}
{{1},{2},{1,2},{1,3},{2,3},{1,2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
MATHEMATICA
sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]], sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]], i}, {i, Length[Union@@m]}]], First[Sort[sysnorm[m, 1]]]]; sysnorm[m_, aft_]:=If[Length[Union@@m]<=aft, {m}, With[{mx=Table[Count[m, i, {2}], {i, Select[Union@@m, #>=aft&]}]}, Union@@(sysnorm[#, aft+1]&/@Union[Table[Map[Sort, m/.{par+aft-1->aft, aft->par+aft-1}, {0, 1}], {par, First/@Position[mx, Max[mx]]}]])]];
Table[Length[Union[sysnorm/@Select[Subsets[Rest[Subsets[Range[n]]]], And[Union@@#===Range[n], Intersection@@#=={}]&]]], {n, 4}]
Number of intersecting antichains with empty intersection (meaning there is no vertex in common to all the edges) covering n vertices.
+10
5
1, 0, 0, 1, 23, 1834, 1367903, 229745722873, 423295077919493525420
COMMENTS
Covering means there are no isolated vertices. A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint.
EXAMPLE
The a(4) = 23 intersecting antichains with empty intersection:
{{1,2},{1,3},{2,3,4}}
{{1,2},{1,4},{2,3,4}}
{{1,2},{2,3},{1,3,4}}
{{1,2},{2,4},{1,3,4}}
{{1,3},{1,4},{2,3,4}}
{{1,3},{2,3},{1,2,4}}
{{1,3},{3,4},{1,2,4}}
{{1,4},{2,4},{1,2,3}}
{{1,4},{3,4},{1,2,3}}
{{2,3},{2,4},{1,3,4}}
{{2,3},{3,4},{1,2,4}}
{{2,4},{3,4},{1,2,3}}
{{1,2},{1,3,4},{2,3,4}}
{{1,3},{1,2,4},{2,3,4}}
{{1,4},{1,2,3},{2,3,4}}
{{2,3},{1,2,4},{1,3,4}}
{{2,4},{1,2,3},{1,3,4}}
{{3,4},{1,2,3},{1,2,4}}
{{1,2},{1,3},{1,4},{2,3,4}}
{{1,2},{2,3},{2,4},{1,3,4}}
{{1,3},{2,3},{3,4},{1,2,4}}
{{1,4},{2,4},{3,4},{1,2,3}}
{{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n], {1, n}], Or[Intersection[#1, #2]=={}, SubsetQ[#1, #2]]&], And[Union@@#==Range[n], #=={}||Intersection@@#=={}]&]], {n, 0, 4}]
CROSSREFS
Intersecting antichain covers are A305844.
Intersecting covers with empty intersection are A326364.
Antichain covers with empty intersection are A305001.
The binomial transform is the non-covering case A326366.
Covering, intersecting antichains with empty intersection are A326365.
Cf. A006126, A007363, A014466, A051185, A058891, A305843, A307249, A318128, A318129, A326361, A326362, A326363.
Number of intersecting antichains of nonempty subsets of {1..n} with empty intersection (meaning there is no vertex in common to all the edges).
+10
5
1, 1, 1, 2, 28, 1960, 1379273, 229755337549, 423295079757497714059
COMMENTS
A set system (set of sets) is an antichain if no edge is a subset of any other, and is intersecting if no two edges are disjoint.
EXAMPLE
The a(0) = 1 through a(4) = 28 intersecting antichains with empty intersection:
{} {} {} {} {}
{{12}{13}{23}} {{12}{13}{23}}
{{12}{14}{24}}
{{13}{14}{34}}
{{23}{24}{34}}
{{12}{13}{234}}
{{12}{14}{234}}
{{12}{23}{134}}
{{12}{24}{134}}
{{13}{14}{234}}
{{13}{23}{124}}
{{13}{34}{124}}
{{14}{24}{123}}
{{14}{34}{123}}
{{23}{24}{134}}
{{23}{34}{124}}
{{24}{34}{123}}
{{12}{134}{234}}
{{13}{124}{234}}
{{14}{123}{234}}
{{23}{124}{134}}
{{24}{123}{134}}
{{34}{123}{124}}
{{12}{13}{14}{234}}
{{12}{23}{24}{134}}
{{13}{23}{34}{124}}
{{14}{24}{34}{123}}
{{123}{124}{134}{234}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n], {1, n}], Or[Intersection[#1, #2]=={}, SubsetQ[#1, #2]]&], #=={}||Intersection@@#=={}&]], {n, 0, 4}]
CROSSREFS
The case with empty edges allowed is A326375.
Intersecting antichains of nonempty sets are A001206.
Intersecting set systems with empty intersection are A326373.
Antichains of nonempty sets with empty intersection are A006126 or A307249.
The inverse binomial transform is the covering case A326365.
Cf. A007363, A014466, A051185, A058891, A305001, A305843, A305844, A318128, A318129, A326361, A326362, A326363, A326364.
Number of sets of subsets of {1,...,n} with intersection {}.
+10
4
2, 3, 11, 219, 64595, 4294642035, 18446744047940725979, 340282366920938463334247399005993378251, 115792089237316195423570985008687907850547725730273056332267095982282337798563
FORMULA
Inverse binomial transform of A119563(n) = 2^(2^n) + 2^n - 1.
EXAMPLE
The a(2) = 11 sets of sets:
{}
{{}}
{{},{1}}
{{},{2}}
{{1},{2}}
{{},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n]]], Or[#=={}, Intersection@@#=={}]&]], {n, 0, 4}]
Number of intersecting set systems with empty intersection (meaning there is no vertex in common to all the edges) covering n vertices.
+10
4
1, 0, 0, 2, 426, 987404, 887044205940, 291072121051815578010398, 14704019422368226413234332571239460300433492086, 12553242487939461785560846872353486129110194397301168776798213375239447299205732561174066488
COMMENTS
Covering means there are no isolated vertices. A set system (set of sets) is intersecting if no two edges are disjoint.
EXAMPLE
The a(3) = 2 intersecting set systems with empty intersection:
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n], {1, n}], Intersection[#1, #2]=={}&], And[Union@@#==Range[n], #=={}||Intersection@@#=={}]&]], {n, 0, 4}]
CROSSREFS
Covering set systems with empty intersection are A318128.
Covering, intersecting set systems are A305843.
Covering, intersecting antichains with empty intersection are A326365.
Cf. A006126, A007363, A014466, A051185, A058891, A305844, A307249, A318129, A326361, A326362, A326363.
Number of intersecting set systems with empty intersection (meaning there is no vertex in common to all the edges) on n vertices.
+10
3
1, 1, 1, 3, 435, 989555, 887050136795, 291072121058024908202443, 14704019422368226413236661148207899662350666147, 12553242487939461785560846872353486129110194529637343578112251094358919036718815137721635299
COMMENTS
A set system (set of sets) is intersecting if no two edges are disjoint.
EXAMPLE
The a(3) = 3 intersecting set systems with empty intersection:
{}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n], {1, n}], Intersection[#1, #2]=={}&], And[#=={}||Intersection@@#=={}]&]], {n, 0, 4}]
CROSSREFS
The inverse binomial transform is the covering case A326364.
Set systems with empty intersection are A318129.
Intersecting set systems are A051185.
Intersecting antichains with empty intersection are A326366.
Cf. A000371, A006126, A007363, A014466, A058891, A305844, A307249, A318128, A326361, A326362, A326363, A326365.
Number of intersecting antichains of subsets of {1..n} with empty intersection (meaning there is no vertex in common to all the edges).
+10
1
2, 2, 2, 3, 29, 1961, 1379274, 229755337550, 423295079757497714060
COMMENTS
A set system (set of sets) is an antichain if no edge is a subset of any other, and is intersecting if no two edges are disjoint.
EXAMPLE
The a(4) = 29 antichains:
{}
{{}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,4},{2,4}}
{{1,3},{1,4},{3,4}}
{{2,3},{2,4},{3,4}}
{{1,2},{1,3},{2,3,4}}
{{1,2},{1,4},{2,3,4}}
{{1,2},{2,3},{1,3,4}}
{{1,2},{2,4},{1,3,4}}
{{1,3},{1,4},{2,3,4}}
{{1,3},{2,3},{1,2,4}}
{{1,3},{3,4},{1,2,4}}
{{1,4},{2,4},{1,2,3}}
{{1,4},{3,4},{1,2,3}}
{{2,3},{2,4},{1,3,4}}
{{2,3},{3,4},{1,2,4}}
{{2,4},{3,4},{1,2,3}}
{{1,2},{1,3,4},{2,3,4}}
{{1,3},{1,2,4},{2,3,4}}
{{1,4},{1,2,3},{2,3,4}}
{{2,3},{1,2,4},{1,3,4}}
{{2,4},{1,2,3},{1,3,4}}
{{3,4},{1,2,3},{1,2,4}}
{{1,2},{1,3},{1,4},{2,3,4}}
{{1,2},{2,3},{2,4},{1,3,4}}
{{1,3},{2,3},{3,4},{1,2,4}}
{{1,4},{2,4},{3,4},{1,2,3}}
{{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n]], Or[Intersection[#1, #2]=={}, SubsetQ[#1, #2]]&], #=={}||Intersection@@#=={}&]], {n, 0, 4}]
CROSSREFS
The case without empty edges is A326366.
Intersecting antichains are A326372.
Antichains of nonempty sets with empty intersection are A006126 or A307249.
Cf. A001206, A007363, A014466, A051185, A058891, A305001, A305843, A305844, A318128, A318129, A326363, A326365, A326373.
Search completed in 0.011 seconds
|