Displaying 1-5 of 5 results found.
page
1
Number of achiral free pure multifunctions with n unlabeled leaves.
+10
13
1, 1, 3, 9, 30, 102, 369, 1362, 5181, 20064, 79035, 315366, 1272789, 5185080, 21296196, 88083993, 366584253, 1533953100, 6449904138, 27238006971, 115475933202, 491293053093, 2096930378415, 8976370298886, 38528771056425, 165784567505325
COMMENTS
An achiral free pure multifunction is either (case 1) the leaf symbol "o", or (case 2) a nonempty expression of the form h[g, ..., g], where h and g are both achiral free pure multifunctions.
FORMULA
a(1) = 1; a(n > 1) = Sum_{0 < k < n} a(n - k) * Sum_{d|k} a(d).
G.f. A(x) satisfies: A(x) = x + A(x) * Sum_{k>=1} A(x^k).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x + (Sum_{n>=1} a(n)*x^n) * (Sum_{n>=1} a(n)*x^n/(1 - x^n)). (End)
EXAMPLE
The first 4 terms count the following multifunctions.
o,
o[o],
o[o,o], o[o[o]], o[o][o],
o[o,o,o], o[o[o][o]], o[o[o[o]]], o[o[o,o]], o[o][o,o], o[o][o[o]], o[o][o][o], o[o,o][o], o[o[o]][o].
MATHEMATICA
a[n_]:=If[n==1, 1, Sum[a[n-k]*Sum[a[d], {d, Divisors[k]}], {k, n-1}]];
Array[a, 12]
PROG
(PARI) seq(n)={my(p=O(x)); for(n=1, n, p = x + p*(sum(k=1, n-1, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-1, v[i]*sumdiv(n-i, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018
CROSSREFS
Cf. A001003, A001678, A002033, A003238, A052893, A053492, A067824, A167865, A214577, A277996, A280000, A317853.
Number of free pure achiral multifunctions (with empty expressions allowed) with one atom and n positions.
+10
6
1, 1, 2, 5, 12, 31, 79, 211, 564, 1543, 4259, 11899, 33526, 95272, 272544, 784598, 2270888, 6604900, 19293793, 56581857, 166523462, 491674696, 1455996925, 4323328548, 12869353254, 38396655023, 114803257039, 343932660450, 1032266513328, 3103532577722
COMMENTS
A free pure achiral multifunction (with empty expressions allowed) (AME) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g, ..., g] where h and g are AMEs. The number of positions in an AME is the number of brackets [...] plus the number of o's.
Also the number of achiral Mathematica expressions with one atom and n positions.
FORMULA
a(1) = 1; a(n > 1) = a(n - 1) + Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1)} a(d).
EXAMPLE
The a(5) = 12 AMEs:
o[o[o]]
o[o][o]
o[o[][]]
o[o,o,o]
o[][o[]]
o[][o,o]
o[][][o]
o[o[]][]
o[o,o][]
o[][o][]
o[o][][]
o[][][][]
MATHEMATICA
a[n_]:=If[n==1, 1, Sum[a[k]*If[k==n-1, 1, Sum[a[d], {d, Divisors[n-k-1]}]], {k, n-1}]];
Array[a, 12]
PROG
(PARI) seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*(1 + sum(k=1, n-2, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=v[n-1] + sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018
Number of free pure achiral multifunctions with one atom and n positions.
+10
6
1, 0, 1, 1, 3, 4, 10, 17, 37, 70, 150, 299, 634, 1311, 2786, 5879, 12584, 26904, 58005, 125242, 271819, 591297, 1290976, 2825170, 6199964, 13635749, 30057649, 66386206, 146903289, 325637240, 723024160, 1607805207, 3580476340, 7984266625, 17827226469
COMMENTS
A free pure achiral multifunction (PAM) is either (case 1) the leaf symbol "o", or (case 2) a nonempty expression of the form h[g, ..., g] where h and g are PAMs. The number of positions in a PAM is the number of brackets [...] plus the number of o's.
FORMULA
a(1) = 1; a(n > 1) = Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1)} a(d).
G.f. A(x) satisfies: A(x) = x * (1 + A(x) * Sum_{k>=1} A(x^k)). - Ilya Gutkovskiy, May 03 2019
EXAMPLE
The a(7) = 10 PAMs:
o[o[o[o]]]
o[o[o][o]]
o[o][o[o]]
o[o[o]][o]
o[o][o][o]
o[o[o,o,o]]
o[o][o,o,o]
o[o,o][o,o]
o[o,o,o][o]
o[o,o,o,o,o]
MATHEMATICA
a[n_]:=If[n==1, 1, Sum[a[k]*Sum[a[d], {d, Divisors[n-k-1]}], {k, n-2}]];
Array[a, 12]
PROG
(PARI) seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*sum(k=1, n-2, subst(p + O(x^(n\k+1)), x, x^k) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018
Number of series-reduced free pure achiral multifunctions with one atom and n positions.
+10
6
1, 0, 0, 1, 1, 1, 2, 3, 4, 7, 9, 14, 21, 32, 45, 69, 103, 153, 224, 338, 500, 746, 1107, 1645, 2447, 3652, 5413, 8052, 11993, 17834, 26500, 39447, 58655, 87240, 129772, 193001, 287034, 427014, 635048, 944501, 1404910, 2089633, 3107864, 4622670, 6875533
COMMENTS
A series-reduced free pure achiral multifunction (SRAM) is either (case 1) the leaf symbol "o", or (case 2) a nonempty and non-unitary expression of the form h[g, ..., g] where h and g are SRAMs. The number of positions in a SRAM is the number of brackets [...] plus the number of o's.
FORMULA
a(1) = 1; a(n > 1) = Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1), d < n - k - 1} a(d).
EXAMPLE
The a(10) = 7 SRAMs:
o[o[o,o],o[o,o]]
o[o,o][o,o][o,o]
o[o,o][o,o,o,o,o]
o[o,o,o][o,o,o,o]
o[o,o,o,o][o,o,o]
o[o,o,o,o,o][o,o]
o[o,o,o,o,o,o,o,o]
MATHEMATICA
a[n_]:=If[n==1, 1, Sum[a[k]*Sum[a[d], {d, Most[Divisors[n-k-1]]}], {k, n-2}]];
Array[a, 12]
PROG
(PARI) seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*sum(k=2, n-2, subst(p + O(x^(n\k+1)), x, x^k)) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, if(d<n-i-1, v[d], 0)))); v} \\ Andrew Howroyd, Aug 19 2018
CROSSREFS
Cf. A001003, A001678, A002033, A003238, A052893, A053492, A067824, A167865, A214577, A317853, A317875.
a(1) = 1; a(n > 1) = Sum_{0 < k < n} (-1)^(n - k - 1) a(n - k) Sum_{d|k} a(d).
+10
5
1, 1, 1, 1, 2, 2, 5, 6, 11, 14, 23, 26, 51, 70, 114, 147, 237, 314, 516, 715, 1118, 1549, 2353, 3252, 5011, 7235, 10724, 15142, 22504, 32506, 47770, 69173, 100980, 146657, 212504, 308563, 448256, 658037, 946166, 1373739, 1988283, 2919185, 4197886, 6118850
MATHEMATICA
a[n_]:=a[n]=If[n==1, 1, Sum[(-1)^(n-k-1)*a[n-k]*Sum[a[d], {d, Divisors[k]}], {k, n-1}]];
Array[a, 50]
CROSSREFS
Cf. A001003, A001678, A002033, A003238, A052893, A053492, A067824, A167865, A214577, A277996, A280000, A317875.
Search completed in 0.055 seconds
|