[go: up one dir, main page]

login
Search: a309881 -id:a309881
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sum of the even parts appearing among the fourth largest parts of the partitions of n into 5 parts.
+0
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 6, 10, 14, 18, 24, 30, 40, 52, 68, 88, 110, 136, 166, 198, 240, 286, 340, 404, 478, 560, 652, 754, 872, 1000, 1146, 1308, 1488, 1686, 1908, 2148, 2416, 2708, 3028, 3376, 3758, 4168, 4616, 5098, 5630, 6200, 6816, 7482, 8198
OFFSET
0,10
LINKS
Index entries for linear recurrences with constant coefficients, signature (3, -4, 4, -4, 4, -4, 4, -2, -2, 6, -10, 12, -12, 12, -12, 11, -9, 4, 4, -9, 11, -12, 12, -12, 12, -10, 6, -2, -2, 4, -4, 4, -4, 4, -4, 3, -1).
FORMULA
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} k * ((k-1) mod 2).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 4*a(n-4) + 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - 2*a(n-8) - 2*a(n-9) + 6*a(n-10) - 10*a(n-11) + 12*a(n-12) - 12*a(n-13) + 12*a(n-14) - 12*a(n-15) + 11*a(n-16) - 9*a(n-17) + 4*a(n-18) + 4*a(n-19) - 9*a(n-20) + 11*a(n-21) - 12*a(n-22) + 12*a(n-23) - 12*a(n-24) + 12*a(n-25) - 10*a(n-26) + 6*a(n-27) - 2*a(n-28) - 2*a(n-29) + 4*a(n-30) - 4*a(n-31) + 4*a(n-32) - 4*a(n-33) + 4*a(n-34) - 4*a(n-35) + 3*a(n-36) - a(n-37) for n > 36.
EXAMPLE
Figure 1: The partitions of n into 5 parts for n = 10, 11, ..
1+1+1+1+10
1+1+1+2+9
1+1+1+3+8
1+1+1+4+7
1+1+1+5+6
1+1+1+1+9 1+1+2+2+8
1+1+1+2+8 1+1+2+3+7
1+1+1+3+7 1+1+2+4+6
1+1+1+4+6 1+1+2+5+5
1+1+1+5+5 1+1+3+3+6
1+1+1+1+8 1+1+2+2+7 1+1+3+4+5
1+1+1+2+7 1+1+2+3+6 1+1+4+4+4
1+1+1+3+6 1+1+2+4+5 1+2+2+2+7
1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6
1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5
1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5
1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4
1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4
1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6
1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5
1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4
1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4
2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3
--------------------------------------------------------------------------
n | 10 11 12 13 14 ...
--------------------------------------------------------------------------
a(n) | 4 6 10 14 18 ...
--------------------------------------------------------------------------
MATHEMATICA
Table[Sum[Sum[Sum[Sum[k * Mod[k - 1, 2], {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]
LinearRecurrence[{3, -4, 4, -4, 4, -4, 4, -2, -2, 6, -10, 12, -12,
12, -12, 11, -9, 4, 4, -9, 11, -12, 12, -12, 12, -10, 6, -2, -2,
4, -4, 4, -4, 4, -4, 3, -1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 6,
10, 14, 18, 24, 30, 40, 52, 68, 88, 110, 136, 166, 198, 240, 286,
340, 404, 478, 560, 652, 754, 872, 1000, 1146, 1308}, 50]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 21 2019
STATUS
approved
Sum of the odd parts appearing among the fourth largest parts in the partitions of n into 5 parts.
+0
3
0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 13, 18, 26, 34, 46, 57, 72, 87, 110, 133, 165, 201, 246, 291, 349, 407, 481, 559, 653, 754, 875, 1003, 1154, 1309, 1496, 1690, 1913, 2152, 2423, 2707, 3032, 3373, 3763, 4169, 4627, 5109, 5643, 6204, 6825, 7473, 8197
OFFSET
0,8
LINKS
Index entries for linear recurrences with constant coefficients, signature (3, -4, 4, -4, 4, -4, 4, -2, -2, 6, -10, 12, -12, 12, -12, 11, -9, 4, 4, -9, 11, -12, 12, -12, 12, -10, 6, -2, -2, 4, -4, 4, -4, 4, -4, 3, -1).
FORMULA
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} k * (k mod 2).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 4*a(n-4) + 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - 2*a(n-8) - 2*a(n-9) + 6*a(n-10) - 10*a(n-11) + 12*a(n-12) - 12*a(n-13) + 12*a(n-14) - 12*a(n-15) + 11*a(n-16) - 9*a(n-17) + 4*a(n-18) + 4*a(n-19) - 9*a(n-20) + 11*a(n-21) - 12*a(n-22) + 12*a(n-23) - 12*a(n-24) + 12*a(n-25) - 10*a(n-26) + 6*a(n-27) - 2*a(n-28) - 2*a(n-29) + 4*a(n-30) - 4*a(n-31) + 4*a(n-32) - 4*a(n-33) + 4*a(n-34) - 4*a(n-35) + 3*a(n-36) - a(n-37) for n > 36.
EXAMPLE
Figure 1: The partitions of n into 5 parts for n = 10, 11, ..
1+1+1+1+10
1+1+1+2+9
1+1+1+3+8
1+1+1+4+7
1+1+1+5+6
1+1+1+1+9 1+1+2+2+8
1+1+1+2+8 1+1+2+3+7
1+1+1+3+7 1+1+2+4+6
1+1+1+4+6 1+1+2+5+5
1+1+1+5+5 1+1+3+3+6
1+1+1+1+8 1+1+2+2+7 1+1+3+4+5
1+1+1+2+7 1+1+2+3+6 1+1+4+4+4
1+1+1+3+6 1+1+2+4+5 1+2+2+2+7
1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6
1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5
1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5
1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4
1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4
1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6
1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5
1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4
1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4
2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3
--------------------------------------------------------------------------
n | 10 11 12 13 14 ...
--------------------------------------------------------------------------
a(n) | 5 7 8 13 18 ...
--------------------------------------------------------------------------
MATHEMATICA
LinearRecurrence[{3, -4, 4, -4, 4, -4, 4, -2, -2, 6, -10, 12, -12, 12, -12, 11, -9, 4, 4, -9, 11, -12, 12, -12, 12, -10, 6, -2, -2, 4, -4, 4, -4, 4, -4, 3, -1}, {0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 13, 18, 26, 34, 46, 57, 72, 87, 110, 133, 165, 201, 246, 291, 349, 407, 481, 559, 653, 754, 875, 1003, 1154, 1309}, 50]
Table[Total[Select[IntegerPartitions[n, {5}][[;; , 4]], OddQ]], {n, 0, 60}] (* Harvey P. Dale, Oct 10 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 21 2019
STATUS
approved
Number of odd parts appearing among the fourth largest parts of the partitions of n into 5 parts.
+0
3
0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 11, 14, 18, 22, 28, 33, 40, 47, 56, 65, 77, 89, 104, 119, 137, 155, 177, 199, 225, 252, 283, 315, 352, 389, 432, 476, 525, 576, 633, 691, 756, 823, 897, 973, 1057, 1143, 1237, 1334, 1439, 1547, 1665, 1786, 1917, 2052
OFFSET
0,8
FORMULA
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} (k mod 2).
Conjectures from Colin Barker, Aug 22 2019: (Start)
G.f.: x^5*(1 - x + x^2)*(1 - x^3 + x^6) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)*(1 - x + x^2 - x^3 + x^4)*(1 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) + a(n-8) - 2*a(n-9) + 2*a(n-10) - 3*a(n-11) + 3*a(n-12) - 2*a(n-13) + 2*a(n-14) - a(n-15) - a(n-18) + 2*a(n-19) - a(n-20) + a(n-21) - 2*a(n-22) + a(n-23) for n>22.
(End) [Conjectures verified by Wesley Ivan Hurt, Aug 24 2019]
EXAMPLE
Figure 1: The partitions of n into 5 parts for n = 10, 11, ..
1+1+1+1+10
1+1+1+2+9
1+1+1+3+8
1+1+1+4+7
1+1+1+5+6
1+1+1+1+9 1+1+2+2+8
1+1+1+2+8 1+1+2+3+7
1+1+1+3+7 1+1+2+4+6
1+1+1+4+6 1+1+2+5+5
1+1+1+5+5 1+1+3+3+6
1+1+1+1+8 1+1+2+2+7 1+1+3+4+5
1+1+1+2+7 1+1+2+3+6 1+1+4+4+4
1+1+1+3+6 1+1+2+4+5 1+2+2+2+7
1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6
1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5
1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5
1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4
1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4
1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6
1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5
1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4
1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4
2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3
--------------------------------------------------------------------------
n | 10 11 12 13 14 ...
--------------------------------------------------------------------------
a(n) | 5 7 8 11 14 ...
--------------------------------------------------------------------------
MATHEMATICA
LinearRecurrence[{2, -1, 1, -2, 1, 0, 0, 1, -2, 2, -3, 3, -2, 2, -1,
0, 0, -1, 2, -1, 1, -2, 1}, {0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8,
11, 14, 18, 22, 28, 33, 40, 47, 56, 65}, 50]
PROG
(PARI) Vec(x^5*(1-x+x^2)*(1-x^3+x^6)/((1-x)^5*(1+x)^2*(1+x^2)*(1+x+x^2)*(1-x+x^2-x^3+x^4)*(1+x^4)*(1+x+x^2+x^3+x^4)) + O(x^70)) \\ Jinyuan Wang, Feb 28 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 21 2019
STATUS
approved

Search completed in 0.007 seconds