[go: up one dir, main page]

login
Search: a305818 -id:a305818
     Sort: relevance | references | number | modified | created      Format: long | short | data
Filter sequence combining from all proper divisors d of n, the prime signature of 2d+1.
+10
5
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 7, 4, 8, 2, 9, 2, 10, 7, 4, 2, 11, 3, 12, 4, 10, 2, 13, 2, 10, 4, 7, 7, 14, 2, 7, 12, 15, 2, 13, 2, 16, 9, 4, 2, 17, 18, 19, 7, 20, 2, 13, 4, 21, 7, 4, 2, 22, 2, 23, 24, 25, 12, 26, 2, 27, 4, 28, 2, 29, 2, 23, 24, 27, 7, 30, 2, 31, 32, 4, 2, 33, 7, 7, 4, 34, 2, 35, 36, 10, 23, 7, 7, 37, 2, 38, 9, 39, 2, 28, 2, 40, 13
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of A305982.
For all i, j: a(i) = a(j) => A305818(i) = A305818(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A305982(n) = { my(m=1); fordiv(n, d, if((d<n), m *= prime(A305973(1+d)-1))); (m); }; \\ Needs also code from A305973.
v305983 = rgs_transform(vector(up_to, n, A305982(n)));
A305983(n) = v305983[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 15 2018
STATUS
approved
Number of divisors d of n such that 2d+1 is a prime.
+10
4
1, 2, 2, 2, 2, 4, 1, 3, 3, 3, 2, 4, 1, 3, 4, 3, 1, 6, 1, 4, 3, 3, 2, 5, 2, 3, 3, 3, 2, 7, 1, 3, 4, 2, 3, 7, 1, 2, 3, 5, 2, 6, 1, 4, 5, 3, 1, 6, 1, 4, 3, 3, 2, 7, 3, 5, 2, 3, 1, 8, 1, 2, 5, 3, 3, 6, 1, 3, 4, 5, 1, 8, 1, 3, 5, 2, 2, 7, 1, 5, 4, 3, 2, 6, 2, 3, 3, 5, 2, 10, 1, 3, 2, 2, 3, 7, 1, 4, 6, 5
OFFSET
1,2
COMMENTS
From Antti Karttunen, Jun 15 2018: (Start)
Number of terms of A005097 that divide n.
For all n >= 1, a(n) > A156660(n). Specifically, a(p) = 2 for all p in A005384 (Sophie Germain primes), although 2's occur in other positions as well.
(End)
LINKS
FORMULA
From Antti Karttunen, Jun 15 2018: (Start)
a(n) = Sum_{d|n} A101264(d).
a(n) = A305818(n) + A101264(n).
(End)
EXAMPLE
10 has divisors 1,2,5 and 10 of which 2.1+1, 2.2+1 and 2.5+1 are prime, so a(10)=3
MATHEMATICA
Table[Count[Divisors[n], _?(PrimeQ[2#+1]&)], {n, 100}] (* Harvey P. Dale, Apr 29 2015 *)
PROG
(PARI) for (n=2, 100, s=0; fordiv(i=n, i, s+=isprime(2*i+1)); print1(", "s))
(PARI) A086668(n) = sumdiv(n, d, isprime(d+d+1)); \\ Antti Karttunen, Jun 15 2018
CROSSREFS
One less than A046886.
KEYWORD
nonn
AUTHOR
Jon Perry, Jul 27 2003
EXTENSIONS
Definition modified by Harvey P. Dale, Apr 29 2015
STATUS
approved

Search completed in 0.010 seconds