[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a304462 -id:a304462
Displaying 1-2 of 2 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A111785 T(n,k) are coefficients used for power series inversion (sometimes called reversion), n >= 0, k = 1..A000041(n), read by rows. +10
13
1, -1, -1, 2, -1, 5, -5, -1, 6, 3, -21, 14, -1, 7, 7, -28, -28, 84, -42, -1, 8, 8, 4, -36, -72, -12, 120, 180, -330, 132, -1, 9, 9, 9, -45, -90, -45, -45, 165, 495, 165, -495, -990, 1287, -429, -1, 10, 10, 10, 5, -55, -110, -110, -55, -55, 220, 660, 330, 660, 55, -715, -2860, -1430, 2002, 5005, -5005, 1430, -1, 11, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Coefficients are listed in Abramowitz and Stegun order (A036036).
The formula for the inversion of the power series y = F(x) = x*G(x) = x*(1 + Sum_{k>=1} g[k]*(x^k)) is obtained as a corollary of Lagrange's inversion theorem. The result is F^{(-1)}(y)= Sum_{n>=1} P(n-1)*y^n, where P(n):=sum over partitions of n of a(n,k)* G[k], with G[k]:=g[1]^e(k,1)*g[2]^e(k,2)*...*g[n]^e(k,n) if the k-th partition of n, in Abramowitz-Stegun order(see the given ref, pp. 831-2), is [1^e(k,1),2^e(k,2),...,n^e(k,n)], for k=1..p(n):= A000041(n) (partition numbers).
The sequence of row lengths is A000041(n) (partition numbers).
The signs are given by (-1)^m(n,k), with the number of parts m(n,k) = Sum_{j=1..n} e(k,j) of the k-th partition of n. For m(n,k) see A036043.
The proof that the unsigned row sums give Schroeder's little numbers A001003(n) results from their formula ((d^(n-1)/dx^(n-1)) ((1-x)/(1-2*x))^n)/n!|_{x=0}, n >= 1. This formula for A001003 can be proved starting with the compositional inverse of the g.f. of A001003 (which is given there in a comment) and using Lagrange's inversion theorem to recover the original sequence A001003.
For alternate formulations and relation to the geometry of associahedra or Stasheff polytopes (and other combinatorial objects) see A133437. [Tom Copeland, Sep 29 2008]
The coefficients of the row polynomials P(n) with monomials in lexicographically descending order e.g. P(6) = -1*g[6] + 8*g[5]*g[1] + 8*g[4]*g[2] - 36*g[4]*g[1]^2 + 4*g[3]^2 - 72*g[3]*g[2]*g[1] - 12*g[2]^3 + 120*g[3]*g[1]^3 + 180*g[2]^2*g[1]^2 - 330*g[2]*g[1]^4 + 132*g[1]^6 are given in A304462. [Herbert Eberle, Aug 16 2018]
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 150, Table 4.1 (unsigned).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
A. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 16, 3.6.25.
Bartomeu Fiol and Alan Rios Fukelman, On the planar free energy of matrix models, arXiv:2111.14783 [hep-th], 2021. See also J. High Energy Phys. (2022) Iss. 2.
Jin Wang, Nonlinear Inverse Relations for Bell Polynomials via the Lagrange Inversion Formula, J. Int. Seq., Vol. 22 (2019), Article 19.3.8.
Eric Weisstein's World of Mathematics, Series Reversion
FORMULA
For row n >= 1 the row polynomial in the variables g[1], ..., g[n] is P(n) = (1/(n+1)!)*(d^n/dx^n)(1/G(x)^(n+1))|_{x=0}. P(0):=1. (d^k/dx^k)G(x)|_{x=0} = k!*g[k], k>=1; G(0)=1.
a(n, k) is the coefficient in P(n) of g[1]^e(k, 1)*g[2]^e(k, 2)*..*g[n]^e(k, n) with the k-th partition of n written as [1^e(k, 1), 2^e(k, 2), ..., n^e(k, n)] in Abramowitz-Stegun order (e(k, j) >= 0; if e(k, j)=0 then j^0 is not recorded).
T(n,k) = (-1)^j*(n+j)!/((n+1)!*Product_{i>=1} s_i!), where (1*s_1 + 2*s_2 + ... = n) is the k-th partition of n and j = s_1 + s_2 ... is the number of parts. - Andrew Howroyd, Feb 01 2022
EXAMPLE
[ +1];
[ -1];
[ -1, 2];
[ -1, 5, -5];
[ -1, 6, 3, -21, 14];
[ -1, 7, 7, -28, -28, 84, -42];
[ -1, 8, 8, 4, -36, -72, -12, 120, 180, -330, 132]; ...
The seventh row, [ -1, 8, 8, 4, -36, -72, -12, 120, 180, -330, 132], stands for the row polynomial P(6) with monomials in lexicographically ascending order P(6) = -1*g[0]^5*g[6] + 8*g[0]^4*g[1]*g[5] + 8*g[0]^4*g[2]*g[4] + 4*g[0]^4*g[3]^2 - 36*g[0]^3*g[1]^2*g[4] - 72*g[0]^3*g[1]*g[2]*g[3] - 12*g[0]^3*g[2]^3 + 120*g[0]^2*g[1]^3*g[3] + 180*g[0]^2*g[1]^2*g[2]^2 - 330*g[0]*g[1]^4*g[2] + 132*g[1]^6 = (1/7!)*(differentiate 1/G(x)^7 six times and evaluate at x = 0). This gives the coefficient of y^7 of F^{(-1)}(y).
MATHEMATICA
(* Graded Colex Ordering: by length, then reverse lexicographic by digit *)
ClearAll[P, L, T, c, g]
P[0] := 1
P[n_] := -Total[
Multinomial @@ # c[Total@# - 1] Times @@
Power[g[#] & /@ Range[0, n - 1], #] & /@
Table[ Count[p, i], {p, Drop[IntegerPartitions[n + 1], 1]}, {i,
n}]]
L[n_] := Join @@ GatherBy[IntegerPartitions[n], Length]
T[1] := {1}
T[n_] := Coefficient[ Do[g[i] = P[i], {i, 0, n - 1}];
P[n - 1], #] & /@ (Times @@@ Map[c, L[n - 1], {2}])
Array[T, 9] // Flatten (* Bradley Klee and Michael Somos, Apr 14 2017 *)
PROG
(Sage)
def A111785_list(dim): # returns the first dim rows
C = [[0 for k in range(m+1)] for m in range(dim+1)]
C[0][0] = 1; F = [1]; i = 1
X = lambda n: 1 if n == 1 else var('x'+str(n))
while i <= dim: F.append(F[i-1]*X(i)); i += 1
for m in (1..dim):
C[m][m] = -C[m-1][m-1]/F[1]
for k in range(m-1, 0, -1):
C[m][k] = -(C[m-1][k-1]+sum(F[i]*C[m][k+i-1] for i in (2..m-k+1)))/F[1]
P = [expand((-1)^m*C[m][1]) for m in (1..dim)]
R = PolynomialRing(ZZ, [X(i) for i in (2..dim)], order='lex')
return [R(p).coefficients()[::-1] for p in P]
A111785_list(8) # Peter Luschny, Apr 14 2017
(PARI)
sv(n)={eval(Str("'s", n))}
Trm(q, v)={my(S=Set(v)); for(i=1, #S, my(x=S[i], c=#select(y->y==x, v)); q=polcoef(q, c, sv(x))); q}
Q(n)={polcoef(serreverse(x + x*sum(k=1, n, x^k*sv(k), O(x*x^n)))/x, n)}
row(n)={my(q=Q(n)); [Trm(q, Vec(v)) | v<-partitions(n)]} \\ Andrew Howroyd, Feb 01 2022
(PARI)
C(v)={my(n=vecsum(v), S=Set(v)); (-1)^#v*(n+#v)!/(n+1)!/prod(i=1, #S, my(x=S[i], c=#select(y->y==x, v)); c!)}
row(n)=[C(Vec(p)) | p<-partitions(n)]
{ for(n=0, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022
CROSSREFS
Row sums give (-1)^n. Unsigned row sums are A001003(n) (little Schroeder numbers). Inversion triangle with leading quadratic term: A276738. Conjectured simplification: A283298.
KEYWORD
sign,look,tabf
AUTHOR
Wolfdieter Lang, Aug 23 2005
EXTENSIONS
Name edited by Andrew Howroyd, Feb 02 2022
STATUS
approved
A306557 Numerator coefficients of the bivariate Maclaurin series ("inverse Kepler equation") developed as Lagrange inversion E=KeplerInv(e,M) of Kepler's equation M = Kepler(e,E) = E - e*sin(E). +10
0
1, 1, 9, 1, 54, 225, 1, 243, 4131, 11025, 1, 1008, 50166, 457200, 893025, 1, 4077, 520218, 11708154, 70301925, 108056025, 1, 16362, 5020623, 243313164, 3274844175, 14427513450, 18261468225, 1, 65511, 46789461, 4535570691, 119537963811, 1107456067125, 3821273720775, 4108830350625 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Coefficients of the numerator polynomials of the bivariate Maclaurin series ("inverse Kepler equation") developed as Lagrange inversion E = KeplerInv(e,M) of Kepler's equation M = Kepler(e,E) = E - e*sin(E), where e=numeric eccentricity, M=mean anomaly, E=eccentric anomaly. The series is KeplerInv(e,M) = M/(1-e) + Sum_{n>=1} (-1)^n*(Sum_{j=1..n} a(n,j)*e^j)/(1-e)^(3n+1)*M^(2n+1)/(2n+1)! = M/(1-e) - (e/(1-e)^4)*M^3/3! + ((e+9*e^2)/(1-e)^7)*M^5/5! - + ... .
The element a(n,n) with highest index in each row (the diagonal element) has the form Product_{j=1..n} (2*j+1)^2.
The derivative dKepler/dE = 1 - e*cos(E) goes to zero at E = i*arccosh(1/e) in the complex plane. Thus dKeplerInv/dM goes to infinity at M = i*(arccosh(1/e) - sqrt(1-e^2)), so that the radius of convergence of KeplerInv(e,M) is arccosh(1/e) - sqrt(1-e^2). KeplerInv(e,M) converges linearly within the circle of convergence |M| < arccosh(1/e) - sqrt(1-e^2).
LINKS
FORMULA
While M = E - e*sin(E) = E*(1-e) - e*Sum_{n>=1} (-1)^n*E^(2n+1)/(2n+1)! the formal power series of the compositional inverse KeplerInv(e,M) is as above according to A111785 and A304462.
EXAMPLE
Matrix (regular triangle) lexicographically ascending in the rows:
1;
1, 9;
1, 54, 225;
1, 243, 4131, 11025;
1, 1008, 50166, 457200, 893025;
1, 4077, 520218, 11708154, 70301925, 108056025;
1, 16362, 5020623, 243313164, 3274844175, 14427513450, 18261468225;
...
CROSSREFS
Generated by A111785 or A304462, diagonal elements are in A001818.
KEYWORD
nonn,tabl
AUTHOR
Herbert Eberle, Feb 23 2019
STATUS
approved
page 1

Search completed in 0.006 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 06:09 EDT 2024. Contains 375510 sequences. (Running on oeis4.)