[go: up one dir, main page]

login
Search: a303852 -id:a303852
     Sort: relevance | references | number | modified | created      Format: long | short | data
Partition containment triangle.
+10
19
1, 2, 2, 3, 4, 3, 5, 8, 7, 5, 7, 12, 13, 12, 7, 11, 20, 23, 25, 19, 11, 15, 28, 35, 42, 39, 30, 15, 22, 42, 54, 70, 70, 66, 45, 22, 30, 58, 78, 105, 114, 119, 99, 67, 30, 42, 82, 112, 158, 178, 202, 186, 155, 97, 42, 56, 110, 154, 223, 262, 313, 314, 292, 226, 139, 56, 77, 152, 215, 319, 383, 479, 503, 511, 442, 336, 195, 77
OFFSET
1,2
COMMENTS
T(n,k) counts pairs of partitions (lambda,mu) with Ferrers diagram of mu not extending beyond the diagram of lambda for all partitions lambda of size n and mu of size k <= n.
First column and main diagonal both equal A000041 (partition numbers).
This sequence counts (2,1)/(1) as different from (3,2,1)/(3,1) while their set-theoretic difference lambda - mu (their skew diagram) is the same.
REFERENCES
I. G. MacDonald: "Symmetric functions and Hall polynomials", Oxford University Press, 1979. Page 4.
LINKS
Eric Weisstein's World of Mathematics, Ferrers Diagram
Wikipedia, Ferrers diagram
FORMULA
Sum_{k=1..n} T(n,k) = A297388(n) - A000041(n). - Alois P. Heinz, Jan 10 2018
EXAMPLE
T(3,2) = 4, the pairs of partitions are ((3)/(2)), ((2,1)/(2), ((2,1)/(1,1)), ((1,1,1)/(1,1))
and the diagrams are:
x x 0 , x x , x 0 , x
0 x x
0
triangle begins:
n=1; 1
n=2; 2 2
n=3; 3 4 3
n=4; 5 8 7 5
n=5; 7 12 13 12 7
n=6; 11 20 23 25 19 11
MAPLE
b:= proc(n, i, t) option remember; expand(`if`(n=0 or i=1,
`if`(t=0, 1, add(x^j, j=0..n)), b(n, i-1, min(i-1, t))+
add(b(n-i, min(i, n-i), min(j, n-i))*x^j, j=0..t)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$3)):
seq(T(n), n=1..15); # Alois P. Heinz, Jul 05 2015, revised Jan 10 2018
MATHEMATICA
majorsweak[left_List, right_List]:=Block[{le1=Length[left], le2=Length[right]}, If[le2>le1||Min[Sign[left-PadRight[right, le1]]]<0, False, True]];
Table[Sum[ If[! majorsweak[\[Lambda], \[Mu]], 0, 1] , {\[Lambda], IntegerPartitions[n] }, {\[Mu], IntegerPartitions[m]}], {n, 7}, {m, n}]
(* Second program: *)
b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[m > n, 0, If[n == 0, 1, If[i < 1, 0, If[t && j > 0, b[n, m, i, j - 1, t], 0] + If[i > j, b[n, m, i - 1, j, False], 0] + If[i > n || j > m, 0, b[n - i, m - j, i, j, True]]]]]; T[n_, m_] := b[n, m, n, m, True]; Table[Table[T[n, m], {m, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Aug 27 2016, after Alois P. Heinz *)
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Jun 28 2015
STATUS
approved
Number of pairs (lambda,mu) of partitions lambda of 2n and mu of n with mu <= lambda (by diagram containment).
+10
4
1, 2, 8, 23, 70, 178, 479, 1119, 2687, 5960, 13203, 27728, 58293, 117084, 234579, 455637, 878603, 1652382, 3089769, 5654741, 10284636, 18389288, 32649594, 57145095, 99386432, 170658713, 291240275, 491704106, 825049784, 1371281674, 2266239384, 3713251732
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Ferrers Diagram
Wikipedia, Ferrers diagram
FORMULA
a(n) = A259478(2n,n) = A303851(2n) = A303852(2n).
CROSSREFS
Bisection (even part) of A303851 and of A303852.
Cf. A259478.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 01 2018
STATUS
approved
Number of pairs (lambda,mu) of partitions lambda of 2n+1 and mu of n+1 with mu <= lambda (by diagram containment).
+10
3
1, 4, 13, 42, 114, 313, 759, 1858, 4207, 9468, 20198, 42955, 87333, 176706, 346450, 673619, 1276936, 2404288, 4429895, 8105634, 14576610, 26017631, 45767924, 79970030, 137934105, 236375455, 400667547, 674818625, 1125626097, 1866565406, 3068368925, 5015847315
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Ferrers Diagram
Wikipedia, Ferrers diagram
FORMULA
a(n) = A259478(2n+1,n+1) = A303852(2n+1).
CROSSREFS
Bisection (odd part) of A303852.
Cf. A259478.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 01 2018
STATUS
approved

Search completed in 0.005 seconds