[go: up one dir, main page]

login
Search: a296625 -id:a296625
     Sort: relevance | references | number | modified | created      Format: long | short | data
Total number of domino tilings of Ferrers-Young diagrams summed over all partitions of 2n.
+10
11
1, 2, 6, 16, 42, 106, 268, 650, 1580, 3750, 8862, 20598, 47776, 109248, 248966, 562630, 1264780, 2823958, 6282198, 13884820, 30590124, 67051982, 146463790, 318588916, 690882926, 1492592450, 3215372064, 6904561416, 14786529836, 31574656096, 67261524262
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..A304790(n)} k * A304789(n,k).
a(n) = Sum_{k=0..n} A304718(n,k).
a(n) = A296625(n) for n < 7.
EXAMPLE
a(2) = 6:
._. .___. ._._. .___. ._.___. .___.___.
| | |___| | | | |___| | |___| |___|___|
|_| | | |_|_| |___| |_|
| | |_|
|_|
MAPLE
h:= proc(l, f) option remember; local k; if min(l[])>0 then
`if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f)))
else for k from nops(l) while l[k]>0 by -1 do od;
`if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
`if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
fi
end:
g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
`if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
+b(n-i, min(n-i, i), [l[], i])):
a:= n-> b(2*n$2, []):
seq(a(n), n=0..12);
MATHEMATICA
h[l_, f_] := h[l, f] = Module[{k}, If[Min[l]>0, If[Length[f] == 0, 1, h[l[[1 ;; f[[1]]]]-1, ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]]>0, k--]; If[Length[f]>0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k>1 && l[[k-1]] == 0, h[ReplacePart[l, {k -> 1, k-1 -> 1}], f], 0]]];
g[l_] := If[Sum[If[OddQ[l[[i]]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0];
b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], b[n, i-1, l] + b[n-i, Min[n-i, i], Append[l, i]]];
a[n_] := b[2n, 2n, {}];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)
CROSSREFS
Row sums of A304718.
Bisection (even part) of A304680.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2018
STATUS
approved
a(n) is the total multiplicity of all products of Schur functions s(lambda)*s(mu) with partition lambda >= mu and size(lambda) + size(mu)= n.
+10
3
1, 1, 4, 7, 20, 37, 90, 171, 378, 721, 1500, 2843, 5682, 10661, 20674
OFFSET
0,3
COMMENTS
The condition lambda >= mu restricts the results to the lower triangular part of the matrix formed by products of all pairs of partitions.
'Multiplicity' signifies that terms like k*s(nu) count as k terms.
EXAMPLE
For n=3 we have
s(3)*s(0) = s(3); s(2,1)*s(0) = s(2,1); s(1,1,1)*s(0) = s(1,1,1)
s(2)*s(1) = s(3) + s(2,1) and
s(1,1)*s(1) = s(2,1) + s(1,1,1)
for a total of 3+2+2 = 7 terms.
MATHEMATICA
Tr/@ Table[Sum[
Length[LRRule[\[Lambda], \[Mu]]], {\[Lambda],
Partitions[n - i]}, {\[Mu],
If[2 i === n, Join[{\[Lambda]}, lesspartitions[\[Lambda]]],
Partitions[i]]}], {n, 14}, {i, 0, Floor[(n)/2]}]; (* Uses functions defined in the 'Toolbox for symmetric functions', see Links. *)
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Wouter Meeussen, Dec 17 2017
STATUS
approved
a(n) is the total multiplicity of all products of Schur functions s(lambda)*s(mu) with size(lambda) + size(mu) = n.
+10
2
1, 2, 6, 14, 34, 74, 164, 342, 714, 1442, 2894, 5686, 11096, 21322, 40688
OFFSET
0,2
COMMENTS
Equals 2*A296624 - aerated version of A296625, so s(lambda)*s(mu) is counted again as s(mu)*s(lambda) if mu <> lambda. The aerated version of A296625 reads as 1, 0, 2, 0, 6, 0, 16, 0, 42, 0, 106, 0, ...
CROSSREFS
For a program see A296624 and A296625.
KEYWORD
nonn,hard,more
AUTHOR
Wouter Meeussen, Dec 17 2017
STATUS
approved

Search completed in 0.006 seconds