[go: up one dir, main page]

login
Search: a294262 -id:a294262
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (F(3*n+1) - 1)/2, where F=A000045 (the Fibonacci sequence).
+10
10
0, 1, 6, 27, 116, 493, 2090, 8855, 37512, 158905, 673134, 2851443, 12078908, 51167077, 216747218, 918155951, 3889371024, 16475640049, 69791931222, 295643364939, 1252365390980, 5305104928861, 22472785106426, 95196245354567, 403257766524696, 1708227311453353, 7236167012338110
OFFSET
0,3
COMMENTS
This is the sequence A(0,1;4,1;2) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
For n>0, a(n) is the least number whose greedy Fibonacci-union-Lucas representation (as at A214973), has n terms. - Clark Kimberling, Oct 23 2012
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 24.
FORMULA
From Ralf Stephan, Jan 23 2003: (Start)
a(n) = 4*a(n-1) + a(n-2) + 2, a(0)=0, a(1)=1.
G.f.: x*(1+x)/((1-x)*(1-4*x-x^2)).
a(n) is asymptotic to -1/2+(sqrt(5)+5)/20*(sqrt(5)+2)^n. (End)
a(n+1) = F(2) + F(5) + F(8) + ... + F(3n+2).
a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3), a(0)=0, a(1)=1, a(2)= 6. Observation by G. Detlefs. See the W. Lang link. - Wolfdieter Lang, Oct 18 2010
a(2*n) = A077259(2*n); a(2*n+1) = A294262(2*n+1). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019
E.g.f.: exp(x)*(exp(x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x)) - 5)/10. - Stefano Spezia, May 24 2024
MATHEMATICA
(Fibonacci[Range[1, 5!, 3]]-1)/2 (* Vladimir Joseph Stephan Orlovsky, May 18 2010 *)
LinearRecurrence[{5, -3, -1}, {0, 1, 6}, 50] (* G. C. Greubel, Dec 05 2017 *)
PROG
(PARI) vector(30, n, n--; (fibonacci(3*n+1) -1)/2) \\ G. C. Greubel, Dec 05 2017
(Magma) [(Fibonacci(3*n+1) - 1)/2: n in [0..30]]; // G. C. Greubel, Dec 05 2017
(Sage) [(fibonacci(3*n+1)-1)/2 for n in (0..30)] # G. C. Greubel, Apr 19 2019
CROSSREFS
Pairwise sums of A049652.
KEYWORD
nonn,easy
STATUS
approved
Expansion of (1-3*x)/(1-5*x+3*x^2+x^3).
+10
4
1, 2, 7, 28, 117, 494, 2091, 8856, 37513, 158906, 673135, 2851444, 12078909, 51167078, 216747219, 918155952, 3889371025, 16475640050, 69791931223, 295643364940, 1252365390981, 5305104928862, 22472785106427, 95196245354568, 403257766524697, 1708227311453354, 7236167012338111, 30652895360805796
OFFSET
0,2
LINKS
M. Dziemianczuk, Counting Lattice Paths With Four Types of Steps, Graphs and Combinatorics, September 2013, DOI 10.1007/s00373-013-1357-1.
Hermann Stamm-Wilbrandt, 6 interlaced bisections
FORMULA
a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3). - N. J. A. Sloane, Jun 23 2017
a(n) = (Fibonacci(3*n+1) + 1)/2 = Sum_{k=0..n} Fibonacci(3*k-1). - Ehren Metcalfe, Apr 15 2019
a(2*n) = A294262(2*n); a(2*n+1) = A254627(2*n+2). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019
MATHEMATICA
LinearRecurrence[{5, -3, -1}, {1, 2, 7}, 30] (* Vincenzo Librandi, Jun 24 2017 *)
CoefficientList[Series[(1-3x)/(1-5x+3x^2+x^3), {x, 0, 30}], x] (* Harvey P. Dale, Oct 19 2024 *)
PROG
(Magma) I:=[1, 2, 7]; [n le 3 select I[n] else 5*Self(n-1)- 3*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 24 2017
(PARI) Vec((1-3*x)/(1-5*x+3*x^2+x^3) + O(x^30)) \\ Felix Fröhlich, Apr 15 2019
(Sage) [(fibonacci(3*n+1) +1)/2 for n in (0..30)] # G. C. Greubel, Apr 19 2019
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 05 2013
STATUS
approved

Search completed in 0.007 seconds