[go: up one dir, main page]

login
Search: a291484 -id:a291484
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of e.g.f. log(1 + arctanh(x))*exp(x).
+10
5
0, 1, 1, 4, 0, 53, -155, 2364, -15288, 216817, -2147215, 32932700, -433435816, 7431919285, -120703007451, 2326504612964, -44614898438480, 963118686971137, -21195404220321151, 508991484878443860, -12604990423335824688, 334199905021923072597, -9181752759370241656699, 266806716890671639953964
OFFSET
0,4
LINKS
FORMULA
E.g.f.: log(1 + (log(1 + x) - log(1 - x))/2)*exp(x).
a(n) ~ -(-1)^n * (n-1)! * exp((1-exp(2))/(1+exp(2))) * ((exp(2)+1)/(exp(2)-1))^n. - Vaclav Kotesovec, Dec 21 2017
EXAMPLE
E.g.f.: A(x) = x/1! + x^2/2! + 4*x^3/3! + 53*x^5/5! - 155*x^6/6! + 2364*x^7/7! - 15288*x^8/8! + ...
MAPLE
a:=series(log(1+arctanh(x))*exp(x), x=0, 24): seq(n!*coeff(a, x, n), n=0..23); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
nmax = 23; CoefficientList[Series[Log[1 + ArcTanh[x]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Log[1 + (Log[1 + x] - Log[1 - x])/2] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) my(ox=O(x^30)); Vecrev(Pol(serlaplace(log(1 + atanh(x + ox)) * exp(x + ox)))) \\ Andrew Howroyd, Dec 12 2017
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Dec 12 2017
STATUS
approved
a(n) = n! * [x^n] exp(n*x)*arctanh(x).
+10
4
0, 1, 4, 29, 288, 3649, 56160, 1017029, 21181440, 498682881, 13095232000, 379443829709, 12025239367680, 413761766695809, 15360425115176960, 611958601019294325, 26042588632355176448, 1179009749826940037889, 56579126414696034729984, 2868848293506101088635389
OFFSET
0,3
LINKS
N. J. A. Sloane, Transforms
FORMULA
E.g.f.: log((1 - LambertW(-x))/(1 + LambertW(-x))) / (2*(1 + LambertW(-x))). - Vaclav Kotesovec, Jun 09 2019
a(n) ~ log(n) * n^n / 4 * (1 + (gamma + 3*log(2))/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jun 09 2019
a(n) = Sum_{k=1..n} binomial(n,k)*(k-1)!*n^(n-k)*(1-(-1)^k)/2. - Fabian Pereyra, Oct 05 2024
MATHEMATICA
Table[n! SeriesCoefficient[Exp[n x] ArcTanh[x], {x, 0, n}], {n, 0, 19}]
nmax = 20; CoefficientList[Series[Log[(1 - LambertW[-x])/(1 + LambertW[-x])] / (2*(1 + LambertW[-x])), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 09 2019 *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 10 2018
STATUS
approved

Search completed in 0.006 seconds