OFFSET
0,9
COMMENTS
This is the transpose of the array in A090182.
LINKS
Seiichi Manyama, Antidiagonals n = 0..55, flattened
FORMULA
G.f. of column k: 1/(1 - x/(1 - k*x/(1 - k^2*x/(1 - k^3*x/(1 - k^4*x/(1 - ...)))))), a continued fraction.
EXAMPLE
G.f. of column k: A_k(x) = 1 + x + (k + 1)*x^2 + (k^3 + k^2 + 2*k + 1)*x^3 + (k^6 + k^5 + 2*k^4 + 3*k^3 + 3*k^2 + 3*k + 1)*x^4 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 5, 17, 43, 89, 161, ...
1, 14, 171, 1252, 5885, 20466, ...
1, 42, 3113, 104098, 1518897, 12833546, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, add(
A(j, k)*A(n-j-1, k)*k^j, j=0..n-1))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 10 2017
MATHEMATICA
Table[Function[k, SeriesCoefficient[1/(1 - x/(1 + ContinuedFractionK[-k^i x, 1, {i, 1, n}])), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
PROG
(Python)
from sympy.core.cache import cacheit
@cacheit
def A(n, k): return 1 if n==0 else sum(A(j, k)*A(n - j - 1, k)*k**j for j in range(n))
for n in range(13): print([A(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, Aug 10 2017, after Maple code
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Aug 09 2017
STATUS
approved