[go: up one dir, main page]

login
Search: a290374 -id:a290374
     Sort: relevance | references | number | modified | created      Format: long | short | data
Convergence speed of m^^m, where m = A067251(n) and n >= 2. a(n) = f(m, m) - f(m, m - 1), where f(x, y) corresponds to the maximum value of k, such that x^^y == x^^(y + 1) (mod 10^k).
+10
30
0, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 6, 1, 1, 3, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1
OFFSET
2,4
COMMENTS
It is possible to anticipate the convergence speed of a^^m, where ^^ indicates tetration or hyper-4 (e.g., 3^^4=3^(3^(3^3))), simply looking at the congruence (mod 25) of m. In fact, assuming m > 2, a(n) = 1 for any m == 2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23 (mod 25), and a(n) >= 2 otherwise.
It follows that 32/45 = 71.11% of the a(n) assume unitary value.
You can also obtain an arbitrary high convergence speed, such as taking the beautiful base b = 999...99 (9_9_9... n times), which gives a(n) = len(b), for any len(b) > 1. Thus, 99...9^^m == 99...9^^(m + 1) (mod m*10^len(b)), as proved by Ripà in "La strana coda della serie n^n^...^n", pages 25-26. In fact, m = 99...9 == 24 (mod 25) and a(m=24) > 1.
From Marco Ripà, Dec 19 2021: (Start)
Knowing the "constant congruence speed" of a given base (a.k.a. the convergence speed of the base m, assuming m > 2) is very useful in order to calculate the exact number of stable digits of all its tetrations of height b > 1. As an example, let us consider all the a(n) such that n is congruent to 4 (mod 9) (i.e., all the tetration bases belonging to the congruence class 5 (mod 10)). Then, the exact number of stable digits (#S(m, b)) of any tetration m^^b (i.e., the number of its last "frozen" digits) such that m is congruent to 5 (mod 10), for any b >= 3, can automatically be calculated by simply knowing that (under the stated constraint) the congruence speed of the m corresponds to the 2-adic valuation of (m^2 - 1) minus 1. Thus, let k = 1, 2, 3, ..., and we have that
If m = 20*k - 5, then #S(m, b > 2) = b*(v_2(m^2 - 1) - 1) + 1 = b*(v_2(m + 1) + 1);
If m = 20*k + 5, then #S(m, b > 2) = (b + 1)*(v_2(m^2 - 1) - 1) = (b + 1)*(v_2(m - 1));
If m = 5, then #S(m, 1) = 1, #S(m, 2) = 4, #S(m, b > 2) = 8 + 2*(b - 3).
(End)
From Marco Ripà, Feb 17 2022: (Start)
For any n > 2, the value of a(n) depends on the congruence modulo 18 of n, since the constant congruence speed of m arises from the 14 nontrivial solutions of the fundamental equation y^5 = y in the (commutative) ring of decadic integers (e.g., y = -1 = ...9999 is a solution of y^5 = y, so it originates the law a(n) = min(v_2(m + 1), v_5(m + 1)) concerning every n belonging to the congruence class 0 modulo 18, as stated in the "Formula" section of the present sequence).
(End)
REFERENCES
Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6
LINKS
Michel Marcus, reducetower.gp (from Math StackExchange).
Marco Ripà, On the Convergence Speed of Tetration, ResearchGate (2018).
Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, Volume 26, 2020, Number 3, Pages 245—260.
Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43-61.
Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441-457.
Wikipedia, Tetration
FORMULA
Let n > 2. For any integer c >= 0, if n is an element of the set {5,7,14,17,22,23,24,29,32,39,41,45,46}, then a(n+45*c) >= 2; whereas a(n) = 1 otherwise. - Marco Ripà, Sep 28 2018
If n == 5 (mod 9), then a(n) = v_2(a(n)^2 - 1) - 1, where v_2(x) indicates the 2-adic valuation of x. - Marco Ripà, Dec 19 2021
If n == 1 (mod 18) and n<>1, then a(n) = min(v_2(m - 1), v_5(m - 1)) (i.e., 1 plus the number of trailing zeros, if any, next to the rightmost digit of m);
if n == 10 (mod 18), then a(n) = min(v_2(m + 1), v_5(m - 1));
if n == {2,8}(mod 9) and n<>2, then a(n) = v_5(m^2 + 1);
if n == {3,7}(mod 18), then a(n) = min(v_2(m + 1), v_5(n^2 + 1));
if n == {12,16}(mod 18), then a(n) = min(v_2(m - 1), v_5(n^2 + 1));
if n == 4 (mod 9), then a(n) = v_5(m + 1);
if n == 5 (mod 18), then a(n) = v_2(m - 1);
if n == 14 (mod 18), then a(n) = v_2(m + 1);
if n == 6 (mod 9), then a(n) = v_5(m - 1);
if n == 9 (mod 18), then a(n) = min(v_2(m - 1), v_5(m + 1));
if n == 0 (mod 18), then a(n) = min(v_2(m + 1), v_5(m + 1)) (i.e., number of digits of the rightmost repunit "9's" of m); where v_2(x) and v_5(x) indicates the 2-adic valuation of (x) and the 5-adic valuation of (x), respectively. - Marco Ripà, Feb 17 2022
EXAMPLE
For m = 25, a(23) = 3 implies that 25^^(25+i) freezes 3*i "new" rightmost digits (i >= 0).
PROG
(PARI) \\ uses reducetower.gp from links
f2(x, y) = my(k=0); while(reducetower(x, 10^k, y) == reducetower(x, 10^k, y+1), k++); k;
f1(n) = polcoef(x*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1) / ((x-1)^2*(x^2+x+1)*(x^6+x^3+1)) + O(x^(n+1)), n, x); \\ A067251
a(n) = my(m=f1(n)); f2(m, m) - f2(m, m-1);
lista(nn) = {for (n=2, nn, print1(a(n), ", "); ); } \\ Michel Marcus, Jan 27 2021
KEYWORD
nonn,base
AUTHOR
Marco Ripà, Aug 10 2018
EXTENSIONS
Edited by Jinyuan Wang, Aug 30 2020
STATUS
approved
10-adic integer x=...07839804103263499879186432 satisfying x^5 = x; also x^3 = -x = A120818; (x^2)^3 = x^2 = A091664; (x^4)^2 = x^4 = A018248.
+10
13
2, 3, 4, 6, 8, 1, 9, 7, 8, 9, 9, 4, 3, 6, 2, 3, 0, 1, 4, 0, 8, 9, 3, 8, 7, 0, 4, 0, 3, 5, 5, 6, 1, 4, 2, 2, 1, 4, 4, 1, 5, 4, 2, 3, 0, 3, 5, 5, 4, 0, 3, 3, 2, 2, 3, 2, 5, 9, 4, 6, 9, 3, 8, 3, 9, 5, 2, 6, 8, 6, 0, 9, 5, 7, 2, 0, 9, 1, 4, 6, 4, 3, 6, 4, 9, 6, 3, 3, 3, 0, 8, 2, 0, 3, 3, 5, 8, 8, 3, 4, 0, 4, 3, 5, 5
OFFSET
0,1
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..9999 (terms 0..999 from Paul D. Hanna)
FORMULA
x = 10-adic limit_{n->infinity} 2^(5^n).
EXAMPLE
x equals the limit of the (n+1) trailing digits of 2^(5^n):
2^(5^0)=(2), 2^(5^1)=(32), 2^(5^2)=33554(432),
2^(5^3)=4253529586511730793292182592897102(6432), ...
x=...93839649523223304553032451441224165530407839804103263499879186432.
x^2=...0557423423230896109004106619977392256259918212890624 (A091664).
x^3=...6695446967548558775834469592160195896736500120813568 (A120818).
x^4=...9442576576769103890995893380022607743740081787109376 (A018248).
x^5=...3304553032451441224165530407839804103263499879186432 = x.
PROG
(PARI) {a(n)=local(b=2, v=[]); for(k=1, n+1, b=b^5%10^k; v=concat(v, (10*b\10^k))); v[n+1]}
(PARI) {a(n)=if(n<0, 0, lift(chinese(Mod(truncate( teichmuller(2+O(5^(n+1)))), 5^(n+1)), Mod(0, 2^(n+1))))\10^n)} /* Michael Somos, Oct 03 2006 */
CROSSREFS
x^5 = x: this sequence (...6432), A120818 (...3568), A290372 (...5807), A290373 (...2943), A290374 (...7057), A290375 (...4193).
KEYWORD
base,nonn
AUTHOR
Paul D. Hanna, Jul 06 2006
STATUS
approved
10-adic integer x = ...5807 satisfying x^5 = x.
+10
8
7, 0, 8, 5, 9, 2, 6, 6, 6, 1, 8, 5, 3, 0, 0, 7, 4, 8, 1, 1, 4, 2, 6, 8, 7, 8, 7, 3, 2, 4, 1, 6, 1, 5, 1, 1, 5, 4, 5, 0, 2, 2, 9, 0, 6, 9, 2, 1, 7, 4, 7, 2, 2, 2, 2, 1, 7, 5, 8, 7, 8, 5, 2, 4, 8, 0, 6, 9, 6, 4, 4, 8, 5, 8, 3, 0, 8, 6, 5, 2, 5, 0, 6, 6, 9, 9, 1, 5
OFFSET
0,1
COMMENTS
Also x^2 = A091661.
LINKS
FORMULA
p = A120817 = ...186432, q = A018247 = ...890625, x = p - q = ...295807.
EXAMPLE
7^5 - 7 == 0 mod 10,
7^5 - 7 == 0 mod 10^2,
807^5 - 807 == 0 mod 10^3,
5807^5 - 5807 == 0 mod 10^4.
From Seiichi Manyama, Aug 01 2019: (Start)
2^(5^0) - 5^(2^0) == 7 mod 10,
2^(5^1) - 5^(2^1) == 7 mod 10^2,
2^(5^2) - 5^(2^2) == 807 mod 10^3,
2^(5^3) - 5^(2^3) == 5807 mod 10^4. (End)
PROG
(Ruby)
def P(n)
s1, s2 = 2, 8
n.times{|i|
m = 10 ** (i + 1)
(0..9).each{|j|
k1, k2 = j * m + s1, (9 - j) * m + s2
if (k1 ** 5 - k1) % (m * 10) == 0 && (k2 ** 5 - k2) % (m * 10) == 0
s1, s2 = k1, k2
break
end
}
}
s1
end
def Q(s, n)
n.times{|i|
m = 10 ** (i + 1)
(0..9).each{|j|
k = j * m + s
if (k ** 2 - k) % (m * 10) == 0
s = k
break
end
}
}
s
end
def A290372(n)
str = (10 ** (n + 1) + P(n) - Q(5, n)).to_s.reverse
(0..n).map{|i| str[i].to_i}
end
p A290372(100)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Jul 28 2017
STATUS
approved
10-adic integer x = ...2943 satisfying x^5 = x.
+10
8
3, 4, 9, 2, 2, 9, 7, 0, 9, 1, 8, 5, 6, 7, 4, 0, 4, 6, 3, 0, 8, 2, 8, 1, 2, 7, 9, 2, 6, 3, 0, 3, 8, 6, 6, 6, 2, 6, 6, 7, 1, 3, 4, 4, 5, 3, 2, 0, 8, 3, 1, 6, 7, 7, 5, 6, 6, 6, 8, 4, 9, 7, 5, 6, 9, 8, 0, 7, 9, 0, 3, 0, 4, 3, 8, 9, 9, 2, 7, 9, 5, 3, 3, 7, 0, 6, 4, 8
OFFSET
0,1
COMMENTS
Also x^2 = A091661.
LINKS
FORMULA
p = A120818 = ...813568, q = A018247 = ...890625, x = p - q = ...922943.
EXAMPLE
3^5 - 3 == 0 mod 10,
43^5 - 43 == 0 mod 10^2,
943^5 - 943 == 0 mod 10^3,
2943^5 - 2943 == 0 mod 10^4.
From Seiichi Manyama, Aug 01 2019: (Start)
8^(5^0) - 5^(2^0) == 3 mod 10,
8^(5^1) - 5^(2^1) == 43 mod 10^2,
8^(5^2) - 5^(2^2) == 943 mod 10^3,
8^(5^3) - 5^(2^3) == 2943 mod 10^4. (End)
PROG
(Ruby)
def P(n)
s1, s2 = 2, 8
n.times{|i|
m = 10 ** (i + 1)
(0..9).each{|j|
k1, k2 = j * m + s1, (9 - j) * m + s2
if (k1 ** 5 - k1) % (m * 10) == 0 && (k2 ** 5 - k2) % (m * 10) == 0
s1, s2 = k1, k2
break
end
}
}
s2
end
def Q(s, n)
n.times{|i|
m = 10 ** (i + 1)
(0..9).each{|j|
k = j * m + s
if (k ** 2 - k) % (m * 10) == 0
s = k
break
end
}
}
s
end
def A290373(n)
str = (10 ** (n + 1) + P(n) - Q(5, n)).to_s.reverse
(0..n).map{|i| str[i].to_i}
end
p A290373(100)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Jul 28 2017
STATUS
approved
10-adic integer x = ...4193 satisfying x^5 = x.
+10
8
3, 9, 1, 4, 0, 7, 3, 3, 3, 8, 1, 4, 6, 9, 9, 2, 5, 1, 8, 8, 5, 7, 3, 1, 2, 1, 2, 6, 7, 5, 8, 3, 8, 4, 8, 8, 4, 5, 4, 9, 7, 7, 0, 9, 3, 0, 7, 8, 2, 5, 2, 7, 7, 7, 7, 8, 2, 4, 1, 2, 1, 4, 7, 5, 1, 9, 3, 0, 3, 5, 5, 1, 4, 1, 6, 9, 1, 3, 4, 7, 4, 9, 3, 3, 0, 0, 8, 4
OFFSET
0,1
COMMENTS
Also x^2 = A091661.
LINKS
FORMULA
p = A120818 = ...813568, q = A018247 = ...890625, x = p + q = ...704193.
EXAMPLE
3^5 - 3 == 0 mod 10,
93^5 - 93 == 0 mod 10^2,
193^5 - 193 == 0 mod 10^3,
4193^5 - 4193 == 0 mod 10^4.
From Seiichi Manyama, Aug 01 2019: (Start)
8^(5^0) + 5^(2^0) == 3 mod 10,
8^(5^1) + 5^(2^1) == 93 mod 10^2,
8^(5^2) + 5^(2^2) == 193 mod 10^3,
8^(5^3) + 5^(2^3) == 4193 mod 10^4. (End)
PROG
(Ruby)
def P(n)
s1, s2 = 2, 8
n.times{|i|
m = 10 ** (i + 1)
(0..9).each{|j|
k1, k2 = j * m + s1, (9 - j) * m + s2
if (k1 ** 5 - k1) % (m * 10) == 0 && (k2 ** 5 - k2) % (m * 10) == 0
s1, s2 = k1, k2
break
end
}
}
s2
end
def Q(s, n)
n.times{|i|
m = 10 ** (i + 1)
(0..9).each{|j|
k = j * m + s
if (k ** 2 - k) % (m * 10) == 0
s = k
break
end
}
}
s
end
def A290375(n)
str = (P(n) + Q(5, n)).to_s.reverse
(0..n).map{|i| str[i].to_i}
end
p A290375(100)
CROSSREFS
x^5 = x: A120817 (...6432), A120818 (...3568), A290372 (...5807), A290373 (...2943), A290374 (...7057), this sequence (...4193).
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Jul 28 2017
STATUS
approved
Constant congruence speed of the tetration base n (in radix-10) and -1 if n is a multiple of 10.
+10
2
0, 0, 1, 1, 1, 2, 1, 2, 1, 1, -1, 1, 1, 1, 1, 4, 1, 1, 2, 1, -1, 1, 1, 1, 2, 3, 2, 1, 1, 1, -1, 1, 2, 1, 1, 2, 1, 1, 1, 1, -1, 1, 1, 2, 1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 3, 1, 3, 1, 1, -1, 1, 1, 1, 1, 6, 1, 1, 3, 1, -1, 1, 1, 1, 2, 2, 2, 1, 1, 1, -1, 1, 2, 1
OFFSET
0,6
COMMENTS
It has been proved that this sequence contains arbitrarily large entries, while a(0) = a(1) = 0 by definition (given the fact that 0^0 = 1 is a reasonable choice and then 0^^b is 1 if b is even, whereas 0^^b is 0 if b is even). For any nonnegative integer n which is not a multiple of 10, a(n) is given by Equation (16) of the paper "Number of stable digits of any integer tetration" (see Links).
Moreover, a sufficient condition for having a constant congruence speed of any tetration base n, greater than 1 and not a multiple of 10, is that b >= 2 + v(n), where v(n) is equal to
u_5(n - 1) iff n == 1 (mod 5),
u_5(n^2 + 1) iff n == 2,3 (mod 5),
u_5(n + 1) iff n == 4 (mod 5),
u_2(n^2 - 1) - 1 iff n == 5 (mod 10)
(u_5 and u_2 indicate the 5-adic and the 2-adic valuation of the argument, respectively).
Therefore b >= n + 1 is always a sufficient condition for the constancy of the congruence speed (as long as n > 1 and n <> 0 (mod 10)).
As a trivial application of this property, we note that the constant congruence speed of the tetration 3^^b is 1 for any b > 1, while 3^3 is not congruent to 3 modulo 10. Thus, we can easily calculate the exact number of the rightmost digits of Graham’s number, G(64) (see A133613), that are the same of the homologous rightmost digits of 3^3^3^... since 3^3 is not congruent to 3 modulo 10, while the congruence speed of n = 3 is constant from height 2 (see A372490). This means that the last slog_3(G(64))-1 digits of G(64) are the same slog_3(G(64))-1 final digits of 3^3^3^..., whereas the difference between the slog_3(G(64))-th digit of G(64) and the slog_3(G(64))-th digit of 3^3^3^... is congruent to 6 modulo 10.
REFERENCES
Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6.
LINKS
Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, Volume 26, 2020, Number 3, Pages 245—260.
Marco Ripà, The congruence speed formula, Notes on Number Theory and DiscreteMathematics, 2021, 27(4), 43—61.
Marco Ripà and Luca Onnis, Number of stable digits of any integer tetration, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441—457.
Wikipedia, Graham's Number.
Wikipedia, Tetration.
FORMULA
a(n) = -1 iff n == 0 (mod 10), a(n) = 0 iff n = 1 or 2. Otherwise, a(n) >= 1 and it is given by Equation (16) from Ripà and Onnis.
EXAMPLE
a(3) = 1 since 3^^b := 3^3^3^... freezes 1 more rightmost digit for each unit increment of b, starting from b = 2.
KEYWORD
sign,base
AUTHOR
Marco Ripà, Jun 02 2024
STATUS
approved
Smallest prime numbers characterized by a convergence speed of n, assuming a(1) = 2 (since 2^2 <> 2^2^2 (mod 10) and 2^2^2 == 2^2^2^2 (mod 10)).
+10
0
2, 5, 193, 1249, 22943, 2218751, 4218751, 74218751, 574218751, 30000000001, 281907922943, 581907922943, 6581907922943, 123418092077057, 480163574218751, 19523418092077057, 40476581907922943, 2152996418333704193, 23640476581907922943, 3640476581907922943
OFFSET
1,1
COMMENTS
It is possible to prove that for any integer n >= 1 there are infinitely many prime numbers with a convergence speed equal to n (invoking Dirichlet's theorem on arithmetic progressions and considering the bases of the form 10^j - 1 + (2*k)*10^j = (2*k + 1)*10^j - 1, since their convergence speed is always equal to j and 10 never divides (2*k + 1)).
Since the only base with a convergence speed of 0 is a = 1 (and 1 is not a prime number), this sequence starts from a(1) = 2, while the convergence speed of 2 has been assumed to be 1 because the tetration 2^^b "freezes" one more rightmost digit for any unitary increment of b for any b >= 3 (the "constant" convergence speed of 2 is 1, even if V(2) = 0 according to the definition used in A317905). In general, a sufficient but not necessary condition to find the constant convergence speed of the base a, is to assume b >= a + 1 (e.g., V(2) corresponds to the new rightmost frozen digit going from 2^^(b >= 3) to 2^^(b + 1)).
This is not a strictly increasing sequence, since 3640476581907922943 = a(20) < a(19) = 23640476581907922943 (while a(19) < a(21) = 803640476581907922943).
For any n >= 3, a(n) == {1,3,7,9}(mod 10), since any prime above 5 is coprime to 10.
LINKS
Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, 2020, 26(3), 245-260.
Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43-61.
EXAMPLE
For n = 3, a(3) = 193, since 193 is the smallest prime number which is characterized by a convergence speed of 3.
KEYWORD
nonn,hard
AUTHOR
Marco Ripà, Nov 29 2020
STATUS
approved

Search completed in 0.010 seconds