[go: up one dir, main page]

login
Search: a288105 -id:a288105
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of Pythagorean triples mod n: total number of solutions to x^2 + y^2 = z^2 mod n.
+10
16
1, 4, 9, 24, 25, 36, 49, 96, 99, 100, 121, 216, 169, 196, 225, 448, 289, 396, 361, 600, 441, 484, 529, 864, 725, 676, 891, 1176, 841, 900, 961, 1792, 1089, 1156, 1225, 2376, 1369, 1444, 1521, 2400, 1681, 1764, 1849, 2904, 2475, 2116, 2209, 4032, 2695, 2900
OFFSET
1,2
COMMENTS
a(n) is multiplicative and, for a prime p, a(p) = p^2. Hence a(n) = n^2 if n is squarefree.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe, terms 1001..5000 from Seiichi Manyama)
Gottfried Helms, Pythagorean triples mod n / Solution enhanced, newsgroup sci.math.research, 2003.
László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
FORMULA
a(n) is multiplicative. For the powers of primes p, there are four cases. For p=2, there are cases for even and odd powers: a(2^(2k-1)) = 2^(3k-1) (2^k-1) and a(2^(2k)) = 2^(3k) (2^(k+1)-1). Similarly, for odd primes p, a(p^(2k-1)) = p^(3k-2) (p^k+p^(k-1)-1) and a(p^(2k)) = p^(3k-1) (p^(k+1)+p^k-1). - T. D. Noe, Dec 22 2003
From Gottfried Helms, May 13 2004: (Start)
If the canonical form of n is n = 2^i * 3^j * 5^k *... * p^q, then it appears that a(n) = n * f(2, i) * f(3, j) * f(5, k) * ... * f(p, q), where f(p, 1) = p for any prime p; f(2, i) = 2^i + 2^i - 2^ceiling(i/2); f(p, i) = p^i + p^(i-1) - p^floor((i-1)/2) for any odd prime p.
For example, a(7) = 49 because a(7) = 7*f(7, 1) = 7*7; a(16) = 448 because a(16) = a(2^4) = 16 * f(2, 4) = 16 * (16+16-4) = 16*28 = 448; a(12) = 216 because a(12) = a(3*2^2) = 12*f(2, 2)*f(3, 1) = 12*(4+4-2)*3 = 216. (End)
Sum_{k=1..n} a(k) ~ c * n^3, where c = (16/45) * Product_{p prime} (1 + 1/(p^3 + p^2 + p)) = (16/45)*zeta(3)/zeta(4) = 0.39488943478263044166... . - Amiram Eldar, Oct 18 2022, Nov 30 2023
MAPLE
A062775 := proc(n)
a := 1;
for pe in ifactors(n)[2] do
p := op(1, pe) ;
e := op(2, pe) ;
if p = 2 then
if type(e, 'odd') then
a := a*p^((3*e+1)/2)*(2^((e+1)/2)-1) ;
else
a := a*p^(3*e/2)*(2^(e/2+1)-1) ;
end if;
else
if type(e, 'odd') then
a := a*p^((3*e-1)/2)*(p^((e+1)/2)+p^((e-1)/2)-1) ;
else
a := a*p^(3*e/2-1)*(p^(e/2+1)+p^(e/2)-1) ;
end if;
end if;
end do:
a ;
end proc:
seq(A062775(n), n=1..100) ; # R. J. Mathar, Jun 25 2018
MATHEMATICA
Table[cnt=0; Do[If[Mod[x^2+y^2-z^2, n]==0, cnt++ ], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}]
f[p_, e_] := If[OddQ[e], p^(3*(e+1)/2 - 2)*(p^((e+1)/2) + p^((e-1)/2) - 1), p^(3*e/2 - 1) * (p^(e/2 + 1) + p^(e/2) - 1)]; f[2, e_] := If[OddQ[e], 2^(3*(e+1)/2 - 1)*(2^((e+1)/2) - 1), 2^(3*e/2)*(2^(e/2+1)-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 18 2022 *)
CROSSREFS
Cf. A091143 (number of solutions to x^2 + y^2 = z^2 mod 2^n).
Number of solutions to x^k + y^k = z^k mod n: this sequence (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).
KEYWORD
nonn,nice,mult
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 18 2001
EXTENSIONS
More terms from Sascha Kurz, Mar 25 2002
STATUS
approved
Number of solutions to x^3 + y^3 = z^3 mod n.
+10
12
1, 4, 9, 20, 25, 36, 55, 112, 189, 100, 121, 180, 109, 220, 225, 448, 289, 756, 487, 500, 495, 484, 529, 1008, 725, 436, 2187, 1100, 841, 900, 1081, 2048, 1089, 1156, 1375, 3780, 973, 1948, 981, 2800, 1681, 1980, 1513, 2420, 4725, 2116, 2209, 4032
OFFSET
1,2
COMMENTS
Equivalently, the number of solutions to x^3 + y^3 + z^3 == 0 (mod n). - Andrew Howroyd, Jul 18 2018
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms n = 1..1000 from Seiichi Manyama)
PROG
(PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^(i^3%n)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ Andrew Howroyd, Jul 18 2018
(Python)
def A063454(n):
ndict = {}
for i in range(n):
m = pow(i, 3, n)
if m in ndict:
ndict[m] += 1
else:
ndict[m] = 1
count = 0
for i in ndict:
ni = ndict[i]
for j in ndict:
k = (i+j) % n
if k in ndict:
count += ni*ndict[j]*ndict[k]
return count # Chai Wah Wu, Jun 06 2017
CROSSREFS
Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), this sequence (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).
KEYWORD
nonn,mult
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 25 2001
EXTENSIONS
More terms from Dean Hickerson, Jul 26, 2001
STATUS
approved
Number of solutions to x^4 + y^4 = z^4 mod n.
+10
9
1, 4, 9, 24, 33, 36, 49, 192, 99, 132, 121, 216, 97, 196, 297, 1536, 193, 396, 361, 792, 441, 484, 529, 1728, 925, 388, 1377, 1176, 1121, 1188, 961, 6144, 1089, 772, 1617, 2376, 1441, 1444, 873, 6336, 481, 1764, 1849, 2904, 3267, 2116, 2209, 13824, 2695, 3700, 1737
OFFSET
1,2
LINKS
PROG
(PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i, n)^4)), 1-x^n)); vecsum(Vec( serconvol(lift(p^2) + O(x^n), lift(p) + O(x^n))))} \\ Andrew Howroyd, Jul 17 2018
CROSSREFS
Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), this sequence (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, Jun 05 2017
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Jul 17 2018
STATUS
approved
Number of solutions to x^5 + y^5 = z^5 mod n.
+10
9
1, 4, 9, 20, 25, 36, 49, 112, 99, 100, 151, 180, 169, 196, 225, 704, 289, 396, 361, 500, 441, 604, 529, 1008, 1625, 676, 1377, 980, 841, 900, 1951, 4864, 1359, 1156, 1225, 1980, 1369, 1444, 1521, 2800, 601, 1764, 1849, 3020, 2475, 2116, 2209, 6336, 2695, 6500, 2601
OFFSET
1,2
COMMENTS
Equivalently, the number of solutions to x^5 + y^5 + z^5 == 0 (mod n). - Andrew Howroyd, Jul 17 2018
LINKS
PROG
(PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i, n)^5)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ Andrew Howroyd, Jul 17 2018
CROSSREFS
Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), this sequence (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, Jun 05 2017
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Jul 17 2018
STATUS
approved
Number of solutions to x^6 + y^6 = z^6 mod n.
+10
9
1, 4, 9, 24, 25, 36, 73, 192, 243, 100, 121, 216, 217, 292, 225, 1024, 289, 972, 217, 600, 657, 484, 529, 1728, 725, 868, 2673, 1752, 841, 900, 1441, 6144, 1089, 1156, 1825, 5832, 3241, 868, 1953, 4800, 1681, 2628, 505, 2904, 6075, 2116, 2209, 9216, 3871, 2900, 2601
OFFSET
1,2
LINKS
PROG
(PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i, n)^6)), 1-x^n)); vecsum(Vec( serconvol(lift(p^2) + O(x^n), lift(p) + O(x^n))))} \\ Andrew Howroyd, Jul 17 2018
CROSSREFS
Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), this sequence (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).
KEYWORD
mult,nonn
AUTHOR
Seiichi Manyama, Jun 05 2017
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Jul 17 2018
STATUS
approved
Number of solutions to x^7 + y^7 = z^7 mod n.
+10
9
1, 4, 9, 20, 25, 36, 49, 112, 99, 100, 121, 180, 169, 196, 225, 704, 289, 396, 361, 500, 441, 484, 529, 1008, 725, 676, 1377, 980, 589, 900, 961, 4864, 1089, 1156, 1225, 1980, 1369, 1444, 1521, 2800, 1681, 1764, 4999, 2420, 2475, 2116, 2209, 6336, 10633, 2900
OFFSET
1,2
COMMENTS
Equivalently, the number of solutions to x^7 + y^7 + z^7 == 0 (mod n). - Andrew Howroyd, Jul 17 2018
LINKS
PROG
(PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i, n)^7)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ Andrew Howroyd, Jul 17 2018
CROSSREFS
Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), this sequence (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, Jun 05 2017
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Jul 17 2018
STATUS
approved
Number of solutions to x^8 + y^8 = z^8 mod n.
+10
9
1, 4, 9, 24, 33, 36, 49, 192, 99, 132, 121, 216, 97, 196, 297, 1536, 385, 396, 361, 792, 441, 484, 529, 1728, 925, 388, 1377, 1176, 1121, 1188, 961, 12288, 1089, 1540, 1617, 2376, 1441, 1444, 873, 6336, 641, 1764, 1849, 2904, 3267, 2116, 2209, 13824, 2695, 3700
OFFSET
1,2
LINKS
MATHEMATICA
Table[cnt=0; Do[If[Mod[x^8 + y^8 - z^8, n]==0, cnt++], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}] (* Vincenzo Librandi, Jul 18 2018 *)
PROG
(PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i, n)^8)), 1-x^n)); vecsum(Vec( serconvol(lift(p^2) + O(x^n), lift(p) + O(x^n))))} \\ Andrew Howroyd, Jul 17 2018
CROSSREFS
Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), this sequence (k=8), A288104 (k=9), A288105 (k=10).
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, Jun 05 2017
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Jul 17 2018
STATUS
approved
Number of solutions to x^9 + y^9 = z^9 mod n.
+10
9
1, 4, 9, 20, 25, 36, 55, 112, 189, 100, 121, 180, 109, 220, 225, 704, 289, 756, 487, 500, 495, 484, 529, 1008, 725, 436, 5103, 1100, 841, 900, 1081, 4864, 1089, 1156, 1375, 3780, 973, 1948, 981, 2800, 1681, 1980, 1513, 2420, 4725, 2116, 2209, 6336, 2989, 2900, 2601
OFFSET
1,2
COMMENTS
Equivalently, the number of solutions to x^9 + y^9 + z^9 == 0 (mod n). - Andrew Howroyd, Jul 17 2018
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Seiichi Manyama)
MATHEMATICA
Table[cnt=0; Do[If[Mod[x^9 + y^9 - z^9, n]==0, cnt++], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}] (* Vincenzo Librandi, Jul 18 2018 *)
PROG
(PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i, n)^9)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ Andrew Howroyd, Jul 17 2018
(Python)
def A288104(n):
ndict = {}
for i in range(n):
m = pow(i, 9, n)
if m in ndict:
ndict[m] += 1
else:
ndict[m] = 1
count = 0
for i in ndict:
ni = ndict[i]
for j in ndict:
k = (i+j) % n
if k in ndict:
count += ni*ndict[j]*ndict[k]
return count # Chai Wah Wu, Jun 05 2017
CROSSREFS
Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), this sequence (k=9), A288105 (k=10).
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, Jun 05 2017
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Jul 17 2018
STATUS
approved

Search completed in 0.009 seconds