[go: up one dir, main page]

login
Search: a280967 -id:a280967
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers that appear in both A278909 and A280967 but not in A280971.
+20
2
765, 1275, 1467, 1503, 1515, 1695, 2910, 2975, 3066, 3423, 4335, 4539, 4605, 4862, 4923, 4947, 4975, 5110, 5295, 5335, 5375, 5559, 5787, 5790, 5835, 5885, 6069, 6123, 6495, 6735, 6783, 7035, 7134, 9195, 9567, 9583, 9645, 9819, 9915, 10087, 10155, 10218, 10234, 10491, 10686, 10959, 10983, 11211
OFFSET
1,1
COMMENTS
Binary equivalent of the sequence representing Numbers that appear in both A176670 and A020342 but not A280928 (currently no members are known).
EXAMPLE
765 = A278909(41) = A280967(32) but is not present in A280971.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Ely Golden, Jan 11 2017
STATUS
approved
Composite numbers having the same bits as their prime factors (with multiplicity), including zero bits.
+10
2
159, 287, 303, 319, 591, 623, 679, 687, 699, 763, 1135, 1167, 1203, 1243, 1247, 1271, 1351, 1371, 1391, 1631, 2167, 2173, 2231, 2285, 2319, 2359, 2463, 2471, 2495, 2519, 2743, 2779, 2787, 2809, 2863, 2931, 2933, 2991, 3029, 3039, 3503, 4223, 4279, 4287, 4319, 4343, 4411, 4439, 4479, 4487
OFFSET
1,1
COMMENTS
Binary equivalent of A280928.
Subsequence of A278909 as well as A280967. The terms in A278909 and A280967 but not this sequence are given by A280972.
PROG
(SageMath)
def factorbits(x):
if(x<2):
return (0, 0);
s=0; t=0
f=list(factor(x));
#ensures inequality of numfactorbits(x) and bin(x).count("1") if x is prime
if((len(f)==1)&(f[0][1]==1)):
return (0, 0);
for c in range(len(f)):
s+=bin(f[c][0]).count("1")*f[c][1]
t+=(bin(f[c][0]).count("0")-1)*f[c][1]
return (s, t);
counter=2
index=1
while(index<=10000):
if(factorbits(counter)==(bin(counter).count("1"), bin(counter).count("0")-1)):
print(str(index)+" "+str(counter))
index+=1;
counter+=1;
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Ely Golden, Jan 11 2017
STATUS
approved

Search completed in 0.005 seconds