Displaying 1-2 of 2 results found.
page
1
765, 1275, 1467, 1503, 1515, 1695, 2910, 2975, 3066, 3423, 4335, 4539, 4605, 4862, 4923, 4947, 4975, 5110, 5295, 5335, 5375, 5559, 5787, 5790, 5835, 5885, 6069, 6123, 6495, 6735, 6783, 7035, 7134, 9195, 9567, 9583, 9645, 9819, 9915, 10087, 10155, 10218, 10234, 10491, 10686, 10959, 10983, 11211
COMMENTS
Binary equivalent of the sequence representing Numbers that appear in both A176670 and A020342 but not A280928 (currently no members are known).
Composite numbers having the same bits as their prime factors (with multiplicity), including zero bits.
+10
2
159, 287, 303, 319, 591, 623, 679, 687, 699, 763, 1135, 1167, 1203, 1243, 1247, 1271, 1351, 1371, 1391, 1631, 2167, 2173, 2231, 2285, 2319, 2359, 2463, 2471, 2495, 2519, 2743, 2779, 2787, 2809, 2863, 2931, 2933, 2991, 3029, 3039, 3503, 4223, 4279, 4287, 4319, 4343, 4411, 4439, 4479, 4487
PROG
(SageMath)
def factorbits(x):
if(x<2):
return (0, 0);
s=0; t=0
f=list(factor(x));
#ensures inequality of numfactorbits(x) and bin(x).count("1") if x is prime
if((len(f)==1)&(f[0][1]==1)):
return (0, 0);
for c in range(len(f)):
s+=bin(f[c][0]).count("1")*f[c][1]
t+=(bin(f[c][0]).count("0")-1)*f[c][1]
return (s, t);
counter=2
index=1
while(index<=10000):
if(factorbits(counter)==(bin(counter).count("1"), bin(counter).count("0")-1)):
print(str(index)+" "+str(counter))
index+=1;
counter+=1;
Search completed in 0.005 seconds
|