[go: up one dir, main page]

login
Search: a278741 -id:a278741
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes p such that sigma(p-1) is a prime q.
+10
13
3, 5, 17, 65537
OFFSET
1,1
COMMENTS
Subsequence of {A023194(n)+1}.
Conjectures: 1) sequence is finite; 2) sequence is a subsequence of A019434 (Fermat primes); 3) sequence consists of Fermat primes p such that sigma(p-1) is a Mersenne prime; 4) a(n) = (A249761(n)+3)/2.
3 is the only prime p such that sigma(p+1) is prime, i.e., 3 is the only prime p such that sigma(p-1) and sigma(p+1) are both primes.
Conjecture: 3 is the only number n such that n and sigma(n+1) are both prime.
Primes p such that A051027(p-1) = sigma(sigma(p-1)) = 2*(p-1). Subsequence of A256438. - Jaroslav Krizek, Mar 29 2015
From Jaroslav Krizek, Mar 17 2016: (Start)
Primes p such that A000203(A000010(p)) = sigma(phi(p)) is a prime.
Prime terms from A062514 and A270413, A270414, A270415 and A270416. (End)
From Jaroslav Krizek, Nov 27 2016: (Start)
Corresponding values of primes q are in A249761: 3, 7, 31, 131071, ...
Conjecture: subsequence of A256438 and A278741.
Conjecture: also primes p such that tau(p-1) is a prime q; corresponding values of primes q are 2, 3, 5, 17. (End)
FORMULA
a(n) = A249760(n) + 1.
Sigma(a(n)-1) = A249761(n).
EXAMPLE
Prime 17 is in the sequence because sigma(17-1) = sigma(16) = 31 (prime).
MAPLE
with(numtheory): A249759:=n->`if`(isprime(n) and isprime(sigma(n-1)), n, NULL): seq(A249759(n), n=1..6*10^5); # Wesley Ivan Hurt, Nov 14 2014
MATHEMATICA
Select[Range[10^5], PrimeQ[#]&& PrimeQ[DivisorSigma[1, # - 1]] &] (* Vincenzo Librandi, Nov 14 2014 *)
Select[Prime[Range[7000]], PrimeQ[DivisorSigma[1, #-1]]&] (* Harvey P. Dale, Jun 14 2020 *)
PROG
(Magma) [p: p in PrimesUpTo(1000000) | IsPrime(SumOfDivisors(p-1))]
(PARI) lista(nn) = {forprime(p=1, nn, if (isprime(sigma(p-1)), print1(p, ", ")); ); } \\ Michel Marcus, Nov 14 2014
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Nov 13 2014
STATUS
approved
a(n) = Sum_{d|n} (2*d)^(n/d - 1).
+10
2
1, 3, 5, 13, 17, 55, 65, 201, 293, 779, 1025, 3365, 4097, 12303, 17781, 49681, 65537, 204547, 262145, 791549, 1095429, 3145751, 4194305, 12897625, 16787217, 50331675, 68788805, 201591509, 268435457, 815505231, 1073741825, 3223326753, 4355433957, 12884901923
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>0} x^k / (1 - 2 * k * x^k).
If p is prime, a(p) = 1 + 2^(p-1).
MATHEMATICA
a[n_] := DivisorSum[n, (2*#)^(n/# - 1) &]; Array[a, 30] (* Amiram Eldar, Aug 14 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (2*d)^(n/d-1));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-2*k*x^k)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 13 2023
STATUS
approved
a(n) = 2^(prime(n) + 1) - 1.
+10
1
7, 15, 63, 255, 4095, 16383, 262143, 1048575, 16777215, 1073741823, 4294967295, 274877906943, 4398046511103, 17592186044415, 281474976710655, 18014398509481983, 1152921504606846975, 4611686018427387903, 295147905179352825855, 4722366482869645213695
OFFSET
1,1
COMMENTS
Numbers whose binary representation is 1 repeated (prime(n)+1) times.
The only prime term is 7.
FORMULA
a(n) = A101304(n) - 2.
a(n) = A000225(A008864(n)). - Felix Fröhlich, Dec 21 2016
EXAMPLE
For n=3; a(3) = 2^(prime(3) + 1) - 1 = 2^(5 + 1) - 1 = 2^6 - 1 = 63.
MAPLE
A279882:=n->2^(ithprime(n)+1)-1: seq(A279882(n), n=1..30); # Wesley Ivan Hurt, Jan 23 2017
MATHEMATICA
f[n_] := 2^(Prime[n]+1)-2; Array[f, 20] (* Robert G. Wilson v, Dec 21 2016 *)
2^(Prime[Range[20]]+1)-1 (* Harvey P. Dale, Jul 29 2024 *)
PROG
(Magma) [2^(NthPrime(n)+1)-1: n in[1..50]]
(PARI) a(n) = 2^(prime(n)+1)-1 \\ Felix Fröhlich, Dec 21 2016
CROSSREFS
Cf. A101304 (2^(prime(n)+1)+1), A098102 (2^(prime(n)-1)-1), A278741 (2^(prime(n)-1)+1).
KEYWORD
nonn,easy
AUTHOR
Jaroslav Krizek, Dec 21 2016
STATUS
approved

Search completed in 0.007 seconds