[go: up one dir, main page]

login
Search: a277498 -id:a277498
     Sort: relevance | references | number | modified | created      Format: long | short | data
E.g.f.: -LambertW(-tan(x)).
+10
3
0, 1, 2, 11, 80, 821, 10608, 167215, 3105024, 66433129, 1609025024, 43521156755, 1300287942656, 42528924900125, 1511407185512448, 57992816331075511, 2389444376908726272, 105219795048784564945, 4931495123285481881600, 245105773365008603770907
OFFSET
0,3
LINKS
FORMULA
a(n) ~ sqrt(1+exp(-2)) * arctan(exp(-1))^(1/2-n) * exp(1/2-n) * n^(n-1).
MAPLE
S:= series(-LambertW(-tan(x)), x, 31):
seq(coeff(S, x, n)*n!, n=0..30); # Robert Israel, Mar 09 2017
MATHEMATICA
CoefficientList[Series[-LambertW[-Tan[x]], {x, 0, 20}], x] * Range[0, 20]!
PROG
(PARI) x='x+O('x^50); concat([0], Vec(serlaplace(-lambertw(-tan(x))))) \\ G. C. Greubel, Nov 07 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 18 2016
STATUS
approved
E.g.f.: -sin(LambertW(-x)).
+10
2
0, 1, 2, 8, 52, 476, 5646, 82368, 1426888, 28623376, 652516090, 16660233600, 470930272572, 14598765522368, 492441140292934, 17955574113204224, 703714660937658128, 29500170665998713088, 1317136516654501334898, 62399954043306802391040
OFFSET
0,3
LINKS
FORMULA
a(n) ~ cos(1) * n^(n-1).
MAPLE
S:= series(-sin(LambertW(-x)), x, 31):
seq(coeff(S, x, n)*n!, n=0..30); # Robert Israel, Oct 30 2016
MATHEMATICA
CoefficientList[Series[-Sin[LambertW[-x]], {x, 0, 20}], x] * Range[0, 20]!
PROG
(PARI) x='x+O('x^50); concat([0], Vec(serlaplace(-sin(lambertw(-x))))) \\ G. C. Greubel, Nov 08 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 18 2016
STATUS
approved

Search completed in 0.006 seconds