[go: up one dir, main page]

login
Search: a274963 -id:a274963
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers n such that sigma(n) and sigma(n) + 2 are both primes.
+10
3
2, 2401, 19356878641, 46904541018721, 119601542190001, 360371335935601, 16472757578830081, 26835157974988801, 59879777952495601, 147669280778756881, 170589096345900241, 219660193449998401, 1103765757989399761, 1515946818108402241, 2044393722679974961, 2608728003079029841, 2805689752523610241, 3071293995460971361, 4537323492222149281, 9583348094642219041, 9982134924573725761
OFFSET
1,1
COMMENTS
Intersection of A249763 and A023194.
The next term, if it exists, must be greater than 5*10^12.
Each term > 2 is a square.
From Chai Wah Wu, Jul 13 2016: (Start)
Every term > 2 is of the form p^(2m) with p prime and m > 1. Proof: from the discussion in A023194, a term is of the form p^(2m). An odd term cannot be of the form n = p^2. If p = 6k+1, then sigma(n) = 36k^2 + 18k + 3 is composite. If p = 6k-1, then sigma(n) + 2 = 36k^2 - 6k + 3 is composite. Finally, 4 is not a term.
This could be the reason this sequence is so much sparser than A274963.
(End)
Terms cannot be of the form 2^(2m) since sigma(2^(2m)) + 2 = 2^(2m+1) + 1 is divisible by 3. - Altug Alkan, Jul 14 2016
Terms cannot be of the form 3^(2m) since sigma(3^(3m)) + 2 = 3(3^(2m) + 1)/2 is divisible by 3, i.e., all terms are of the form (6*k+1)^(2m) or (6*k-1)^(2m) - Chai Wah Wu, Aug 06 2016
Terms cannot be of the form p^6 since if p = 6*k+1, then sigma((6*k+1)^6) + 2 = 9*(5184*k^6 + 6048*k^5 + 3024*k^4 + 840*k^3 + 140*k^2 + 14*k + 1) and if p = 6*k-1 then sigma((6*k-1)^6) + 2 = 3*(15552*k^6 - 12960*k^5 + 4752*k^4 - 936*k^3 + 108*k^2 - 6*k + 1). Also note that terms cannot be of the form p^8 since if p = 6*k-1 then sigma((6*k-1)^8) = (1 - 6*k + 36*k^2)*(1 - 18*k + 432*k^2 - 4104*k^3 + 19440*k^4 - 46656*k^5 + 46656*k^6) and if p = 6*k+1 then sigma((6*k+1)^8) = 9*(186624*k^8 + 279936*k^7 + 186624*k^6 + 72576*k^5 + 18144*k^4 + 3024*k^3 + 336*k^2 + 24*k + 1). The least term that is of the form p^10 is 2089^10. So this partially explains why numbers of the form p^4 appear in this sequence most of the time in limited range. - Altug Alkan, Jul 15 2016
From Chai Wah Wu, Jul 20 2016: (Start)
If p^m > 2 is a term, then m == 4 mod 6 and p == 1 mod 6. Proof: Let q(k) be sigma(p^m) expressed as a polynomial in k. If p = 6k-1, then q(k) = 1 + (6k-1) + (6k-1)^2 + ... + (6k-1)^m.
The constant term of q(k) is 1-1+1-1+...-1+1 = 1 whereas the other coefficients are multiples of 6, i.e., q(k) = 1 + 6k*(...), thus sigma(p^m) + 2 is a multiple of 3.
Suppose p = 6k+1, then q(k) = 1 + (6k+1) + (6k+1)^2 + ... + (6k+1)^m. The constant term is m+1 and the other coefficients are multiples of 6, i.e., q(k) = (m+1) + 6k*(...).
This means that if m = 6r+2, then sigma(p^m) is a multiple of 3 and if m = 6r, then sigma(p^m) + 2 is a multiple of 3. End of Proof.
The following table lists the minimal k for r <= 4.
r | smallest k such that (6k+1)^(6r+4) is a term (A275237)
------------------------------------------------------------
0 | 1
1 | 348
2 | 436
3 | 6018
4 | 5880
For every prime p = 6k+1, does there exist r >= 0 such that(6k+1)^(6r+4) is a term?
(End)
Altug Alkan found that sigma((6k+1)^34) (i.e., the r = 5 case) is always composite (see comment in A275237). - Chai Wah Wu, Jul 21 2016
EXAMPLE
2401 is in the sequence because sigma(2401) = 2801 and sigma(2401) + 2 = 2803 are both primes.
PROG
(Magma) [n: n in[1..10^7] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n)+2)]
(Python)
from sympy import isprime, divisor_sigma
A274962_list = [2]+[n for n, s in ((d**2, divisor_sigma(d**2)) for d in range(1, 10**3)) if isprime(s) and isprime(s+2)] # Chai Wah Wu, Jul 13 2016
(PARI) isok(n) = isprime(s=sigma(n)) && isprime(s+2); \\ Michel Marcus, Jul 14 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jul 12 2016
EXTENSIONS
a(4)-a(21) from Chai Wah Wu, Jul 13 2016
STATUS
approved
Smallest number k > 0 such that sigma(x) and sigma(x)+2 are both prime, where x = (6k+1)^(6n+4), or -1 if no such k exists.
+10
1
1, 348, 436, 6018, 5880, -1, 4612, 26921, 16166, 81111, -1, 426260, -1, 181876, 227180, -1, 12836, 287388, 2317, -1, -1, 1128403, 668927, -1, 5295, -1, -1, 490118, 2217967, 1607226, -1, 1212183, 100728, -1, -1, -1, -1, 1191713, 43475567, 165965, -1, 2915491, 361885, 4159496, 3398061, -1, 88930, -1, 10451327, -1, -1
OFFSET
0,2
COMMENTS
If x is a number such that sigma(x) and sigma(x)+2 are both prime (A274962), then x = 2 or x is of the form (6k+1)^(6r+4) where 6k+1 is prime.
For p = 6*k+1, sigma(p^34) = (46656*k^6 + 54432*k^5 + 27216*k^4 + 7560*k^3 + 1260*k^2 + 126*k + 7) * (1296*k^4 + 1080*k^3 + 360*k^2 + 60*k + 5) * c(k), thus a(5) = -1. - Altug Alkan , Jul 21 2016
Similarly a(12) = a(19) = a(23) = a(26) = a(33) = a(34) = -1. Furthermore, for all r > 0, a(5*r) = -1 since sigma((6k+1)^(30r+4)) = ((6*k+1)^(6*r) + ((6*k+1)^(6*r) -1)/(6*k))*(1296*k^4*(6*k + 1)^(24*r) + 864*k^3*(6*k + 1)^(24*r) + 216*k^3*(6*k + 1)^(18*r) + 216*k^2*(6*k + 1)^(24*r) + 108*k^2*(6*k + 1)^(18*r) + 36*k^2*(6*k + 1)^(12*r) + 24*k*(6*k + 1)^(24*r) + 18*k*(6*k + 1)^(18*r) + 12*k*(6*k + 1)^(12*r) + 6*k*(6*k + 1)^(6*r) + (6*k + 1)^(24*r) + (6*k + 1)^(18*r) + (6*k + 1)^(12*r) + (6*k + 1)^(6*r) + 1). - Chai Wah Wu, Jul 21 2016
FORMULA
a(A059324(n)) = -1. - Altug Alkan, Aug 13 2016
EXAMPLE
For n = 0, x = 7^4 is the smallest fourth power such that sigma(x) and sigma(x)+2 are both prime, thus a(0) = 1.
CROSSREFS
KEYWORD
sign,hard
AUTHOR
Chai Wah Wu, Jul 20 2016
EXTENSIONS
a(31)-a(37) from Chai Wah Wu, Aug 01 2016
a(38)-a(50) from Chai Wah Wu, Aug 18 2016
STATUS
approved

Search completed in 0.008 seconds