[go: up one dir, main page]

login
Search: a272514 -id:a272514
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k) read by rows = number of partitions of n-set into k blocks with distinct sizes, k = 1..A003056(n).
+10
16
1, 1, 1, 3, 1, 4, 1, 15, 1, 21, 60, 1, 63, 105, 1, 92, 448, 1, 255, 2016, 1, 385, 4980, 12600, 1, 1023, 15675, 27720, 1, 1585, 61644, 138600, 1, 4095, 155155, 643500, 1, 6475, 482573, 4408404, 1, 16383, 1733550, 12687675, 37837800, 1, 26332, 4549808, 60780720
OFFSET
1,4
COMMENTS
Row sums = A007837.
Sum k! * T(n,k) = A032011.
Sum k * T(n,k) = A131623. - Geoffrey Critzer, Aug 30 2012.
T(n,k) is also the number of words w of length n over a k-ary alphabet {a1,a2,...,ak} with #(w,a1) > #(w,a2) > ... > #(w,ak) > 0, where #(w,x) counts the letters x in word w. T(5,2) = 15: aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, abbaa, baaaa, baaab, baaba, babaa, bbaaa. - Alois P. Heinz, Jun 21 2013
LINKS
FORMULA
E.g.f.: Product_{n>=1} (1+y*x^n/n!).
T(A000217(n),n) = A022915(n). - Alois P. Heinz, Jul 03 2018
EXAMPLE
Triangle T(n,k)begins:
1;
1;
1, 3;
1, 4;
1, 15;
1, 21, 60;
1, 63, 105;
1, 92, 448;
1, 255, 2016;
1, 385, 4980, 12600;
1, 1023, 15675, 27720;
1, 1585, 61644, 138600;
1, 4095, 155155, 643500;
1, 6475, 482573, 4408404;
1, 16383, 1733550, 12687675, 37837800;
...
MAPLE
b:= proc(n, i, t, v) option remember; `if`(t=1, 1/(n+v)!,
add(b(n-j, j, t-1, v+1)/(j+v)!, j=i..n/t))
end:
T:= (n, k)->`if`(k*(k+1)/2>n, 0, n!*b(n-k*(k+1)/2, 0, k, 1)):
seq(seq(T(n, k), k=1..floor(sqrt(2+2*n)-1/2)), n=1..20);
# Alois P. Heinz, Jun 21 2013
# second Maple program:
b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, 1, b(n, i-1)+binomial(n, i)*
expand(x*b(n-i, min(n-i, i-1)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..20); # Alois P. Heinz, Sep 27 2019
MATHEMATICA
nn=10; p=Product[1+y x^i/i!, {i, 1, nn}]; Range[0, nn]! CoefficientList[ Series[p, {x, 0, nn}], {x, y}]//Grid (* Geoffrey Critzer, Aug 30 2012 *)
KEYWORD
nonn,tabf
AUTHOR
Vladeta Jovovic, Sep 04 2007
STATUS
approved
Elements to the right of the central elements of the even-Pascal triangle A028326 that are not 2.
+10
7
6, 8, 20, 10, 30, 12, 70, 42, 14, 112, 56, 16, 252, 168, 72, 18, 420, 240, 90, 20, 924, 660, 330, 110, 22, 1584, 990, 440, 132, 24, 3432, 2574, 1430, 572, 156, 26, 6006, 4004, 2002, 728, 182, 28, 12870, 10010, 6006, 2730, 910, 210, 30, 22880, 16016
OFFSET
0,1
FORMULA
From G. C. Greubel, Jul 14 2024: (Start)
T(n, k) = 2*binomial(n+3, k+2 + floor((n+1)/2)).
Sum_{k=0..floor(n/2)} T(n, k) = A272514(n+3).
Sum_{k=0..n} (-1)^k*T(2*n, k) = 2*A286033(n+2).
Sum_{k=0..n} (-1)^k*T(2*n+1, k) = binomial(2*n+4, n+2) + 2*(-1)^n.
(End)
EXAMPLE
This sequence represents the following portion of A028330(n,k), with x being the elements of A028329(n):
x;
., .;
., x, .;
., ., 6, .;
., ., x, 8, .;
., ., ., 20, 10, .;
., ., ., x, 30, 12, .;
., ., ., ., 70, 42, 14, .;
., ., ., ., x, 112, 56, 16, .;
., ., ., ., ., 252, 168, 72, 18, .;
., ., ., ., ., x, 420, 240, 90, 20, .;
., ., ., ., ., ., 924, 660, 330, 110, 22, .;
., ., ., ., ., ., x, 1584, 990, 440, 132, 24, .;
As an irregular triangle:
6;
8;
20, 10;
30, 12;
70, 42, 14;
112, 56, 16;
252, 168, 72, 18;
420, 240, 90, 20;
924, 660, 330, 110, 22;
MATHEMATICA
Table[2*Binomial[n+3, k+2 +Floor[(n+1)/2]], {n, 0, 12}, {k, 0, Floor[n/2] }]//Flatten (* G. C. Greubel, Jul 14 2024 *)
PROG
(Magma)
[2*Binomial(n+3, k): k in [Floor((n+5)/2)..n+2], n in [0..12]]; // G. C. Greubel, Jul 14 2024
(SageMath)
def A028326(n, k): return 2*binomial(n, k)
flatten([[A028326(n+1, k) for k in range(((n+3)//2), n+1)] for n in range(21)]) # G. C. Greubel, Jul 14 2024
KEYWORD
nonn,tabf
EXTENSIONS
More terms from James A. Sellers
STATUS
approved

Search completed in 0.006 seconds