[go: up one dir, main page]

login
Search: a272259 -id:a272259
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of circular arrangements of the first n positive integers such that adjacent terms have absolute difference 1 or 4.
+10
0
1, 0, 1, 1, 1, 3, 2, 3, 6, 5, 10, 12, 14, 25, 27, 40, 57, 68, 104, 133, 177, 255, 324, 454, 617, 811, 1136, 1507, 2042, 2803, 3729, 5109, 6904, 9290, 12692, 17070, 23152, 31430, 42361, 57567, 77842, 105279, 142865, 193040, 261589, 354316, 479189, 649498, 878905
OFFSET
5,6
COMMENTS
Permutations in which adjacent terms sum to a particular value is a property central to the sequences A090460, A071984, A108658, A272259, and A107929.
LINKS
Ethan P. White, Richard K. Guy, Renate Scheidler, Difference Necklaces, arXiv:2006.15250 [math.CO], 2020. See Table A.1 p. 31.
FORMULA
a(n) = -a(n-1) + a(n-3) + a(n-4) + 2*a(n-5) + 2*a(n-6) + a(n-7) + a(n-8) + a(n-9) for n > 13.
G.f.: x^5*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)/(1 + x - x^3 - x^4 - 2*x^5 - 2*x^6 - x^7 - x^8 - x^9). - Stefano Spezia, Aug 03 2020
MATHEMATICA
CoefficientList[ Series[(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)/(1 + x - x^3 - x^4 - 2*x^5 - 2*x^6 - x^7 - x^8 - x^9), {x, 0, 50}], x] (* Wesley Ivan Hurt, Nov 07 2020 *)
CROSSREFS
See A079977 or A017899 for other sequences counting similar circular arrangements of positive integers.
KEYWORD
nonn,easy
AUTHOR
Ethan Patrick White, Aug 02 2020
STATUS
approved

Search completed in 0.004 seconds