[go: up one dir, main page]

login
Search: a269370 -id:a269370
     Sort: relevance | references | number | modified | created      Format: long | short | data
Permutation of nonnegative integers: a(1) = 0, a(2) = 1, a(2n) = 2*a(n), a(2n+1) = 1 + 2*a(A269370(2n+1)).
+20
5
0, 1, 3, 2, 5, 6, 7, 4, 15, 10, 13, 12, 31, 14, 63, 8, 9, 30, 11, 20, 127, 26, 21, 24, 255, 62, 23, 28, 25, 126, 511, 16, 1023, 18, 29, 60, 2047, 22, 27, 40, 17, 254, 4095, 52, 47, 42, 61, 48, 8191, 510, 16383, 124, 41, 46, 95, 56, 55, 50, 53, 252, 19, 1022, 32767, 32, 49, 2046, 65535, 36, 131071, 58, 125, 120
OFFSET
1,3
COMMENTS
Note the indexing: Domain starts from 1, range from 0.
FORMULA
a(1) = 0, a(2) = 1, a(2n) = 2*a(n), a(2n+1) = 1 + 2*a(A269370(2n+1)).
As a composition of related permutations:
a(n) = A269386(A260741(n)).
PROG
(Scheme, with memoization-macro definec)
(definec (A269376 n) (cond ((<= n 2) (- n 1)) ((even? n) (* 2 (A269376 (/ n 2)))) (else (+ 1 (* 2 (A269376 (A269370 n)))))))
CROSSREFS
Inverse: A269375.
Cf. A269370.
Related permutation: A269378.
Cf. also A252756, A269386.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 01 2016
STATUS
approved
Permutation of natural numbers: a(1) = 0, after which a(2n) = 1 + 2*a(n), a(2n+1) = 2 * a(A269370(n)).
+20
4
0, 1, 2, 3, 6, 5, 4, 7, 8, 13, 10, 11, 16, 9, 32, 15, 14, 17, 12, 27, 64, 21, 26, 23, 128, 33, 24, 19, 22, 65, 256, 31, 512, 29, 18, 35, 1024, 25, 20, 55, 30, 129, 2048, 43, 48, 53, 34, 47, 4096, 257, 8192, 67, 54, 49, 96, 39, 40, 45, 42, 131, 28, 513, 16384, 63, 46, 1025, 32768, 59, 65536, 37, 66, 71, 131072, 2049, 262144, 51, 38, 41
OFFSET
1,3
COMMENTS
Note the indexing: Domain starts from 1, range from 0.
FORMULA
a(1) = 0, after which, a(2n) = 1 + 2*a(n), a(2n+1) = 2 * a(A269370(n)).
As a composition of related permutations:
a(n) = A269388(A260741(n)).
PROG
(Scheme, with memoization-macro definec)
(definec (A269378 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A269378 (/ n 2))))) (else (* 2 (A269378 (A269370 n))))))
CROSSREFS
Inverse: A269377.
Cf. A269370.
Related permutation: A269376.
Cf. also A252754, A269388.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 01 2016
STATUS
approved
Self-inverse permutation of natural numbers: a(1) = 1, for n even, a(n) = A269369(1+a(n/2)), for n odd, a(n) = 2*a(A269370(n)-1).
+20
4
1, 3, 2, 5, 4, 7, 6, 11, 14, 19, 8, 17, 22, 9, 34, 29, 12, 21, 10, 53, 18, 13, 28, 47, 106, 81, 42, 23, 16, 123, 94, 83, 246, 15, 44, 59, 166, 39, 38, 155, 68, 27, 118, 35, 162, 103, 24, 137, 54, 375, 274, 239, 20, 49, 70, 65, 78, 61, 36, 365, 58, 333, 750, 245, 56, 403, 666, 41, 806, 55, 212, 173, 82, 585, 346, 113, 84, 57, 1170, 461, 26, 73, 32
OFFSET
1,2
FORMULA
a(1) = 1, for n even, a(n) = A269369(1+a(n/2)), for n odd, a(n) = 2*a(A269370(n)-1).
PROG
(Scheme, with memoization-macro definec)
(definec (A270197 n) (cond ((<= n 1) n) ((even? n) (A269369 (+ 1 (A270197 (/ n 2))))) (else (* 2 (A270197 (- (A269370 n) 1))))))
CROSSREFS
Similar or related permutations A270195, A270196, A269867.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 13 2016
STATUS
approved
a(1) = 1, after which, for odd numbers: a(n) = A260739(n)-th number k for which A260738(k) = A260738(n)-1, and for even numbers: a(n) = a(n/2).
+10
14
1, 1, 2, 1, 3, 2, 5, 1, 4, 3, 7, 2, 11, 5, 6, 1, 13, 4, 9, 3, 8, 7, 17, 2, 23, 11, 10, 5, 25, 6, 19, 1, 12, 13, 15, 4, 29, 9, 14, 3, 37, 8, 41, 7, 16, 17, 43, 2, 21, 23, 18, 11, 47, 10, 31, 5, 20, 25, 35, 6, 53, 19, 22, 1, 27, 12, 61, 13, 24, 15, 67, 4, 55, 29, 26, 9, 71, 14, 33, 3, 28, 37, 77, 8, 49, 41, 30, 7, 83, 16, 89, 17, 32, 43, 39, 2
OFFSET
1,3
COMMENTS
For odd numbers n > 1, a(n) tells which term is on the immediately preceding row of A255127 (square array generated by Ludic sieve), in the same column where n itself is.
LINKS
FORMULA
a(1) = 1; after which, for even numbers a(n) = a(n/2), and for odd numbers a(n) = A255127(A260738(n)-1, A260739(n)).
Other identities. For all n >= 1:
a(A269379(n)) = n.
PROG
(definec (A269380 n) (cond ((= 1 n) n) ((even? n) (A269380 (/ n 2))) (else (A255127bi (- (A260738 n) 1) (A260739 n))))) ;; Code for A255127bi given in A255127.
CROSSREFS
Cf. A269172, A269355, A269357, A269382, A269386, A269388 (sequences that use this function).
Cf. also A268674, A269370.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 01 2016
STATUS
approved
a(1) = 1, a(n) = A260439(n)-th number k for which A260438(k) = A260438(n)+1; a(n) = A255551(A260438(n)+1, A260439(n)).
+10
9
1, 3, 7, 5, 19, 11, 9, 17, 13, 23, 39, 29, 15, 35, 21, 41, 61, 47, 27, 53, 25, 59, 81, 65, 31, 71, 45, 77, 103, 83, 33, 89, 37, 95, 123, 101, 43, 107, 57, 113, 145, 119, 49, 125, 55, 131, 165, 137, 51, 143, 63, 149, 187, 155, 85, 161, 97, 167, 207, 173, 91, 179, 67, 185, 229, 191, 69, 197, 73, 203, 249, 209, 75
OFFSET
1,2
COMMENTS
For n > 1, a(n) = the number located immediately below n in A255551 (square array generated by Lucky sieve) in the same column where n itself is.
Permutation of odd numbers.
LINKS
FORMULA
a(1) = 1; for n > 1, a(n) = A255551(A260438(n)+1, A260439(n)).
Other identities. For all n >= 1:
A269370(a(n)) = n.
PROG
(Scheme) (define (A269369 n) (if (= 1 n) n (A255551bi (+ (A260438 n) 1) (A260439 n)))) ;; Code for A255551bi given in A255551.
CROSSREFS
Cf. A269370 (left inverse).
Cf. also A250469, A269379.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 01 2016
STATUS
approved
Permutation of natural numbers: a(1) = 1, a(2n) = 2*a(n), a(A269369(1+n)) = 1 + 2*a(n).
+10
4
1, 2, 3, 4, 7, 6, 5, 8, 13, 14, 15, 12, 17, 10, 25, 16, 11, 26, 9, 28, 21, 30, 27, 24, 57, 34, 53, 20, 31, 50, 49, 32, 101, 22, 35, 52, 65, 18, 29, 56, 51, 42, 105, 60, 69, 54, 23, 48, 85, 114, 97, 68, 19, 106, 121, 40, 37, 62, 43, 100, 33, 98, 229, 64, 55, 202, 197, 44, 405, 70, 115, 104, 89, 130, 209, 36, 107, 58, 261, 112, 61
OFFSET
1,2
FORMULA
a(1) = 1, after which for even n, a(n) = 2*a(n/2), for odd n, a(n) = 1 + 2*a(A269370(n)-1).
PROG
(Scheme, with memoization-macro definec)
(definec (A270196 n) (cond ((<= n 1) n) ((even? n) (* 2 (A270196 (/ n 2)))) (else (+ 1 (* 2 (A270196 (- (A269370 n) 1)))))))
CROSSREFS
Inverse: A270195.
Related or similar permutations: A269866, A269373, A269376, A270197.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 13 2016
STATUS
approved

Search completed in 0.010 seconds