[go: up one dir, main page]

login
Search: a266972 -id:a266972
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of acyclic orientations of the Turán graph T(n,2).
+10
9
1, 1, 2, 4, 14, 46, 230, 1066, 6902, 41506, 329462, 2441314, 22934774, 202229266, 2193664790, 22447207906, 276054834902, 3216941445106, 44222780245622, 578333776748674, 8787513806478134, 127464417117501586, 2121181056663291350, 33800841048945424546
OFFSET
0,3
COMMENTS
The Turán graph T(n,2) is also the complete bipartite graph K_{floor(n/2),ceiling(n/2)}.
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
LINKS
Beáta Bényi and Peter Hajnal, Combinatorics of poly-Bernoulli numbers, arXiv:1510.05765 [math.CO], 2015; Studia Scientiarum Mathematicarum Hungarica, Vol. 52, No. 4 (2015), 537-558, DOI:10.1556/012.2015.52.4.1325.
P. J. Cameron, C. A. Glass, and R. U. Schumacher, Acyclic orientations and poly-Bernoulli numbers, arXiv:1412.3685 [math.CO], 2014-2018.
Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8.
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
Wikipedia, Turán graph
FORMULA
a(n) = Sum_{i=0..floor(n/2)} i!^2 * Stirling2(ceiling(n/2)+1,i+1) * Stirling2(floor(n/2)+1,i+1).
a(n) = A099594(floor(n/2),ceiling(n/2)).
a(n) = Sum_{k=0..n} abs(A266972(n,k)).
a(n) ~ n! / (sqrt(1-log(2)) * 2^n * (log(2))^(n+1)). - Vaclav Kotesovec, Feb 18 2017
MAPLE
a:= n-> (p-> add(Stirling2(n-p+1, i+1)*Stirling2(p+1, i+1)*
i!^2, i=0..p))(iquo(n, 2)):
seq(a(n), n=0..25);
MATHEMATICA
a[n_] := With[{q=Quotient[n, 2]}, Sum[StirlingS2[n-q+1, i+1] StirlingS2[ q+1, i+1] i!^2, {i, 0, q}]];
Array[a, 24, 0] (* Jean-François Alcover, Nov 06 2018 *)
CROSSREFS
Column k=2 of A267383.
Bisections give A048163 (even part), A188634 (odd part).
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 02 2016
STATUS
approved
Triangle T(n,k), n>=0, 0<=k<=2n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete bipartite graph K_(n,n), highest powers first.
+10
6
1, 1, -1, 0, 1, -4, 6, -3, 0, 1, -9, 36, -75, 78, -31, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0, 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, 5552680, -6796926, 4787174
OFFSET
0,6
COMMENTS
The complete bipartite graph K_(n,n) has 2n vertices and n^2 = A000290(n) edges. The chromatic polynomial of K_(n,n) has 2n+1 = A005408(n) coefficients.
LINKS
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
FORMULA
T(n,k) = [q^(2n-k)] Sum_{j=0..n} (q-j)^n * S2(n,j) * Product_{i=0..j-1} (q-i).
EXAMPLE
3 example graphs: +-----------+
. o o o o o o |
. | |\ /| |\ /|\ /|\ /
. | | X | | X | X | X
. | |/ \| |/ \|/ \|/ \
. o o o o o o |
. +-----------+
Graph: K_(1,1) K_(2,2) K_(3,3)
Vertices: 2 4 6
Edges: 1 4 9
The complete bipartite graph K_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
1;
1, -1, 0;
1, -4, 6, -3, 0;
1, -9, 36, -75, 78, -31, 0;
1, -16, 120, -524, 1400, -2236, 1930, -675, ...
1, -25, 300, -2200, 10650, -34730, 75170, -102545, ...
1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, ...
...
MAPLE
P:= n-> add(Stirling2(n, k) *mul(q-i, i=0..k-1) *(q-k)^n, k=0..n):
T:= n-> seq(coeff(P(n), q, 2*n-k), k=0..2*n):
seq(T(n), n=1..8);
CROSSREFS
Columns k=0-2 give: A000012, (-1)*A000290, A083374.
Row sums and last elements of rows give: A000007.
Row lengths give: A005408.
Sums of absolute values of row elements give: A048163(n+1).
T(n,2n-1) = (-1)*A092552(n).
KEYWORD
sign,tabf
AUTHOR
Alois P. Heinz, Apr 30 2012
EXTENSIONS
T(0,0)=1 prepended by Alois P. Heinz, May 03 2024
STATUS
approved
Start with a single triangle; at n-th generation add a triangle at each vertex, allowing triangles to overlap; sequence gives number of triangles in n-th generation.
+10
4
1, 3, 6, 12, 18, 30, 42, 66, 90, 138, 186, 282, 378, 570, 762, 1146, 1530, 2298, 3066, 4602, 6138, 9210, 12282, 18426, 24570, 36858, 49146, 73722, 98298, 147450, 196602, 294906, 393210, 589818, 786426, 1179642, 1572858, 2359290, 3145722, 4718586, 6291450
OFFSET
0,2
COMMENTS
Number of 3-colorings of the (n,2)-Turán graph. - Alois P. Heinz, Jun 07 2024
REFERENCES
R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6.
LINKS
R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6. [Scanned photocopy of pages 5, 6 only, with annotations by R. K. Guy and N. J. A. Sloane]
FORMULA
Explicit formula given in Maple line.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3) for n>3. G.f.: (1+2*x)*(1+x^2)/((1-x)*(1-2*x^2)). - Colin Barker, May 08 2012
a(n) = 3*A027383(n-1) for n>0, a(0)=1. - Bruno Berselli, May 08 2012
MAPLE
A061776 := proc(n) if n mod 2 = 0 then 6*(2^(n/2)-1); else 3*(2^((n-1)/2)-1)+3*(2^((n+1)/2)-1); fi; end; # for n >= 1
MATHEMATICA
a[0]=1; a[n_/; EvenQ[n]]:=6*(2^(n/2)-1); a[n_/; OddQ[n]] := 3*(2^((n-1)/2)-1) + 3*(2^((n+1)/2)-1); a /@ Range[0, 37] (* Jean-François Alcover, Apr 22 2011, after Maple program *)
CoefficientList[Series[(1 + 2 x) (1 + x^2) / ((1 - x) (1 - 2 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
LinearRecurrence[{1, 2, -2}, {1, 3, 6, 12}, 40] (* Harvey P. Dale, Mar 27 2019 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; -2, 2, 1]^n*[1; 3; 6])[1, 1] \\ Charles R Greathouse IV, Feb 19 2017
CROSSREFS
A061777 gives total population of triangles at n-th generation.
Cf. A266972.
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved

Search completed in 0.008 seconds