[go: up one dir, main page]

login
Search: a264868 -id:a264868
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number T(n,k) of permutations p of [n] such that in 0p the largest up-jump equals k and no down-jump is larger than 2; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
+10
15
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 9, 8, 4, 0, 1, 25, 36, 20, 10, 0, 1, 71, 156, 108, 58, 26, 0, 1, 205, 666, 586, 340, 170, 74, 0, 1, 607, 2860, 3098, 2014, 1078, 528, 218, 0, 1, 1833, 12336, 16230, 11888, 6772, 3550, 1672, 672, 0, 1, 5635, 53518, 85150, 69274, 42366, 23284, 11840, 5454, 2126
OFFSET
0,9
COMMENTS
An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here.
LINKS
FORMULA
T(n,n) = A206464(n-1) for n>0.
Sum_{k=0..n} T(n,k) = A264868(n+1).
EXAMPLE
T(4,1) = 1: 1234.
T(4,2) = 9: 1243, 1324, 1342, 2134, 2143, 2314, 2341, 2413, 2431.
T(4,3) = 8: 1423, 1432, 3124, 3142, 3214, 3241, 3412, 3421.
T(4,4) = 4: 4213, 4231, 4312, 4321.
T(5,5) = 10: 53124, 53142, 53214, 53241, 53412, 53421, 54213, 54231, 54312, 54321.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 2;
0, 1, 9, 8, 4;
0, 1, 25, 36, 20, 10;
0, 1, 71, 156, 108, 58, 26;
0, 1, 205, 666, 586, 340, 170, 74;
0, 1, 607, 2860, 3098, 2014, 1078, 528, 218;
...
MAPLE
b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1, k), j=1..min(2, u))+
add(b(u+j-1, o-j, k), j=1..min(k, o)))
end:
T:= (n, k)-> b(0, n, k)-`if`(k=0, 0, b(0, n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
b[u_, o_, k_] := b[u, o, k] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, k], {j, 1, Min[2, u]}] + Sum[b[u+j-1, o-j, k], {j, 1, Min[k, o]}]];
T[n_, k_] := b[0, n, k] - If[k == 0, 0, b[0, n, k-1]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2019, after Alois P. Heinz *)
PROG
(Python)
from sympy.core.cache import cacheit
@cacheit
def b(u, o, k): return 1 if u + o==0 else sum([b(u - j, o + j - 1, k) for j in range(1, min(2, u) + 1)]) + sum([b(u + j - 1, o - j, k) for j in range(1, min(k, o) + 1)])
def T(n, k): return b(0, n, k) - (0 if k==0 else b(0, n, k - 1))
for n in range(13): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Aug 30 2017
CROSSREFS
T(2n,n) gives A320290.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 29 2017
STATUS
approved
Triangular array: For n >= 2 and 0 <= k <= n - 2, T(n, k) equals the number of rooted duplication trees on n gene segments whose leftmost visible duplication event is (k, r), for 1 <= r <= (n - k)/2.
+10
5
1, 1, 1, 2, 2, 2, 4, 6, 6, 6, 10, 16, 22, 22, 22, 26, 48, 70, 92, 92, 92, 74, 144, 236, 328, 420, 420, 420, 218, 454, 782, 1202, 1622, 2042, 2042, 2042, 672, 1454, 2656, 4278, 6320, 8362, 10404, 10404, 10404, 2126, 4782, 9060, 15380, 23742, 34146, 44550, 54954, 54954, 54954
OFFSET
2,4
COMMENTS
See Figure 3(a) in Gascuel et al. (2003).
REFERENCES
O. Gascuel (Ed.), Mathematics of Evolution and Phylogeny, Oxford University Press, 2005
LINKS
O. Gascuel, M. Hendy, A. Jean-Marie and R. McLachlan, (2003) The combinatorics of tandem duplication trees, Systematic Biology 52, 110-118.
J. Yang and L. Zhang, On Counting Tandem Duplication Trees, Molecular Biology and Evolution, Volume 21, Issue 6, (2004) 1160-1163.
FORMULA
T(n,k) = Sum_{j = 0.. k+1} T(n-1,j) for n >= 3, 0 <= k <= n - 2, with T(2,0) = 1 and T(n,k) = 0 for k >= n - 1.
T(n,k) = T(n,k-1) + T(n-1,k+1) for n >= 3, 1 <= k <= n - 2.
EXAMPLE
Triangle begins
n\k| 0 1 2 3 4 5 6 7
---+---------------------------------------
2 | 1
3 | 1 1
4 | 2 2 2
5 | 4 6 6 6
6 | 10 16 22 22 22
7 | 26 48 70 92 92 92
8 | 74 144 236 328 420 420 420
9 | 218 454 782 1202 1622 2042 2042 2042
...
MAPLE
A264869 := proc (n, k) option remember;
`if`(n <= 2, 1, add(A264869(n - 1, j), j = 0 .. min(k + 1, n - 3))) end proc:
seq(seq(A264869(n, k), k = 0..n - 2), n = 2..11);
CROSSREFS
Cf. A206464 (column 0), A264868 (row sums and main diagonal), A086521.
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Bala, Nov 27 2015
STATUS
approved
Number of tandem duplication trees on n duplicated gene segments.
+10
3
1, 1, 3, 11, 46, 210, 1021, 5202, 27477, 149324, 830357, 4705386, 27087106, 158019030, 932390694, 5555902302, 33391080001, 202196156448, 1232550473918, 7558030268270, 46592437224093, 288599067239678, 1795348952256896
OFFSET
2,3
COMMENTS
For n > 2, 2*a(n) is the number of rooted tandem duplication trees. See A264869.
REFERENCES
O. Gascuel (Ed.), Mathematics of Evolution and Phylogeny, Oxford University Press, 2005
LINKS
O. Gascuel, M. Hendy, A. Jean-Marie and R. McLachlan, (2003) The combinatorics of tandem duplication trees, Systematic Biology 52, 110-118.
J. Yang and L. Zhang, On Counting Tandem Duplication Trees, Molecular Biology and Evolution, Volume 21, Issue 6, (2004) 1160-1163.
FORMULA
a(n) = b(n+1, n-1), where b(n, 0) = b(n-1, 0) + b(n-1, 1); b(n, k) = b(n-1, k+1) + b(n, k-1), for k = 1, ..., n-2; with initial values b(2, 0) = 1, b(3, 0) = 0, b(3, 1) = 1.
For n >= 2, a(n) = b(n)/2, where b(n) = Sum_{k = 1..floor((n + 1)/3)} (-1)^(k + 1)*binomial(n + 1 - 2*k,k)*b(n-k) with b(1) = b(2) = 1 (Yang and Zhang). - Peter Bala, Nov 27 2015
EXAMPLE
a(5) = 11, so there are 11 binary leaf labeled trees on 5 duplicate genes. As there are 15 binary leaf labeled trees, this means not all binary leaf labeled trees can represent a gene duplication tree.
MAPLE
with(combinat):
b := proc (n) option remember;
if n = 2 then 2 elif n = 3 then 2 else add((-1)^(k+1)*binomial(n+1-2*k, k)*b(n-k), k = 1..floor((n+1)/3)) end if; end proc:
seq(b(n)/2, n = 2..24); # Peter Bala, Nov 27 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael D Hendy (m.hendy(AT)massey.ac.nz), Sep 10 2003
EXTENSIONS
More terms from David Wasserman, Mar 11 2005
STATUS
approved
Triangular array: For n >= 2 and 0 < k <= n - 2, T(n, k) equals the number of (unrooted) duplication trees on n gene segments that are canonical and whose leftmost visible duplication event is (k, r), for 1 <= r <= (n - k)/2.
+10
3
1, 0, 1, 1, 1, 1, 2, 3, 3, 3, 5, 8, 11, 11, 11, 13, 24, 35, 46, 46, 46, 37, 72, 118, 164, 210, 210, 210, 109, 227, 391, 601, 811, 1021, 1021, 1021, 336, 727, 1328, 2139, 3160, 4181, 5202, 5202, 5202, 1063, 2391, 4530, 7690, 11871, 17073, 22275, 27477, 27477, 27477
OFFSET
0,7
COMMENTS
See Figure 3(b) in Gascuel et al. (2003).
From row 4 onwards, the entries are one-half the corresponding entries in A264879.
Row sums give the number of unrooted duplication trees on n gene segments, A086521.
REFERENCES
O. Gascuel (Ed.), Mathematics of Evolution and Phylogeny, Oxford University Press, 2005
LINKS
O. Gascuel, M. Hendy, A. Jean-Marie and R. McLachlan, The combinatorics of tandem duplication trees, Systematic Biology 52, 110-118, (2003).
J. Yang and L. Zhang, On Counting Tandem Duplication Trees", Molecular Biology and Evolution, Volume 21, Issue 6, (2004) 1160-1163.
FORMULA
T(n,k) = Sum_{j = 0..k+1} T(n-1,j) for n >= 4, 0 <= k <= n - 2, with T(2,0) = T(3,1) = 1, T(3,0) = 0 and T(n,k) = 0 for k >= n - 1.
T(n,k) = T(n,k-1) + T(n-1,k+1) for n >= 4, 1 <= k <= n - 2.
EXAMPLE
Triangle begins
n\k| 0 1 2 3 4 5 6 7
----------------------------------------------
.2.| 1
.3.| 0 1
.4.| 1 1 1
.5.| 2 3 3 3
.6.| 5 8 11 11 11
.7.| 13 24 35 46 46 46
.8.| 37 72 118 164 210 210 210
.9.| 109 227 391 601 811 1021 1021 1021
...
MAPLE
A264870 := proc (n, k) option remember;
`if`(n = 3 and k = 0, 0, `if`(n <= 4 and k <= n-2, 1, `if`(k > n - 2, 0, add(A264870(n-1, j), j = 0..min(k+1, n))))) end proc:
seq(seq(A264870(n, k), k = 0..n-2), n = 2..11);
CROSSREFS
Cf. A086521 (row sums), A264868, A264869.
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Bala, Nov 27 2015
STATUS
approved

Search completed in 0.008 seconds