[go: up one dir, main page]

login
Search: a258467 -id:a258467
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of plane partitions of 2n into parts of exactly n sorts which are introduced in ascending order.
+0
3
1, 3, 48, 1253, 45040, 2074266, 115308621, 7403931515, 542578637369, 44353623326199, 3992458392860603, 392255543503496555, 41726405940340028501, 4768006168373548992878, 582709500037368041005243, 75765509130126834789261446, 10436240655486571146294062847
OFFSET
0,2
LINKS
FORMULA
a(n) = A319730(2n,n).
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 26 2018
STATUS
approved
Number T(n,k) of partitions of n into parts of exactly k sorts which are introduced in ascending order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
+0
17
1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 5, 12, 7, 1, 0, 7, 30, 33, 11, 1, 0, 11, 72, 130, 77, 16, 1, 0, 15, 160, 463, 438, 157, 22, 1, 0, 22, 351, 1557, 2216, 1223, 289, 29, 1, 0, 30, 743, 5031, 10422, 8331, 2957, 492, 37, 1, 0, 42, 1561, 15877, 46731, 52078, 26073, 6401, 788, 46, 1
OFFSET
0,5
COMMENTS
In general, column k>1 is asymptotic to c*k^n, where c = 1/(k!*Product_{n>=1} (1-1/k^n)) = 1/(k!*QPochhammer[1/k, 1/k]). - Vaclav Kotesovec, Jun 01 2015
LINKS
FORMULA
T(n,k) = A255970(n,k)/k! = (Sum_{i=0..k} (-1)^i * C(k,i) * A246935(n,k-i)) / A000142(k).
EXAMPLE
T(3,1) = 3: 1a1a1a, 2a1a, 3a.
T(3,2) = 4: 1a1a1b, 1a1b1a, 1a1b1b, 2a1b.
T(3,3) = 1: 1a1b1c.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 3, 4, 1;
0, 5, 12, 7, 1;
0, 7, 30, 33, 11, 1;
0, 11, 72, 130, 77, 16, 1;
0, 15, 160, 463, 438, 157, 22, 1;
0, 22, 351, 1557, 2216, 1223, 289, 29, 1;
0, 30, 743, 5031, 10422, 8331, 2957, 492, 37, 1;
0, 42, 1561, 15877, 46731, 52078, 26073, 6401, 788, 46, 1;
...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 21 2016, after Alois P. Heinz *)
CROSSREFS
Columns k=0-10 give: A000007, A000041 (for n>0), A258457, A258458, A258459, A258460, A258461, A258462, A258463, A258464, A258465.
Row sums give A258466.
T(2n,n) give A258467.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Mar 15 2015
STATUS
approved
Decimal expansion of the number x other than -2 defined by x*exp(x) = -2/e^2.
+0
38
4, 0, 6, 3, 7, 5, 7, 3, 9, 9, 5, 9, 9, 5, 9, 9, 0, 7, 6, 7, 6, 9, 5, 8, 1, 2, 4, 1, 2, 4, 8, 3, 9, 7, 5, 8, 2, 1, 0, 9, 9, 7, 5, 7, 5, 1, 8, 1, 1, 4, 0, 6, 3, 5, 0, 0, 0, 4, 9, 5, 4, 8, 8, 3, 0, 3, 9, 1, 5, 0, 1, 5, 1, 8, 3, 8, 1, 2, 0, 4, 9, 7, 6, 7, 2, 5, 0, 0, 7, 2, 3, 3, 8, 1, 5, 5, 9, 2, 8, 5, 8, 2, 9, 3, 8
OFFSET
0,1
LINKS
FORMULA
Equals -2*A106533.
Equals LambertW(-2*exp(-2)).
EXAMPLE
-0.4063757399599599076769581241248397582109975751811406350004954883....
MATHEMATICA
RealDigits[N[ProductLog[-2/E^2], 105]][[1]] (* corrected by Vaclav Kotesovec, Feb 21 2014 *)
PROG
(PARI) solve(x=-1, x=0, x*exp(x) + 2*exp(-2)) \\ G. C. Greubel, Nov 15 2017
KEYWORD
nonn,cons
AUTHOR
STATUS
approved

Search completed in 0.007 seconds