Displaying 1-4 of 4 results found.
page
1
Number of partitions of n*(n+1)*(n+2) into parts that are at most n.
+10
5
1, 1, 13, 331, 13561, 776594, 57773582, 5320252480, 586352480958, 75438829494131, 11116206652400681, 1848033852642973772, 342436117841931383400, 70020229273505952925559, 15667865938977592230047929, 3809417116914053901413289249, 1000291703885548521424635046427
FORMULA
a(n) ~ exp(2*n + 13/4) * n^(n-3) / (2*Pi).
MAPLE
T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n<k, 0, T(n-k, k))) end proc: seq(T(n*(n+1)*(n+2), n), n=0..20);
Number of partitions of n*(n+1)*(n+2)/6 into parts that are at most n.
+10
5
1, 1, 3, 14, 108, 1115, 14800, 239691, 4602893, 102442041, 2596767156, 73937412122, 2338157235782, 81358388835166, 3090548185022616, 127310130911561966, 5654266354725389764, 269396637045530725099, 13708631585852580662781, 742141584297248778501411
FORMULA
a(n) ~ exp(2*n + 9/2) * n^(n-3) / (2*Pi * 6^(n-1)).
MAPLE
T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n<k, 0, T(n-k, k))) end proc: seq(T(n*(n+1)*(n+2)/6, n), n=0..20);
Number of partitions of n*(n-1)*(n-2) into parts that are at most n.
+10
5
1, 1, 1, 7, 169, 7166, 436140, 34690401, 3418486403, 402588217564, 55217486292383, 8650673262689142, 1524827150449505994, 298774748146352115019, 64436825369109396329518, 15171417879016739747222223, 3872658124805520661780283663, 1065387724298834666633864592587
FORMULA
a(n) ~ exp(2*n - 11/4) * n^(n-3) / (2*Pi).
MAPLE
T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n<k, 0, T(n-k, k))) end proc: seq(T(n*(n-1)*(n-2), n), n=0..20);
Number of partitions of n*(n+1)*(2n+1)/6 into parts that are at most n.
+10
5
1, 1, 3, 24, 297, 5260, 123755, 3648814, 129828285, 5425234114, 260818130929, 14194798070042, 863357482347465, 58068803644110427, 4281318749672322843, 343463734454952001605, 29792472711307060688049, 2778959190056157071592315, 277420695604265258419161136
FORMULA
a(n) ~ exp(2*n + 9/4) * n^(n-3) / (2*Pi * 3^(n-1)).
MAPLE
T:=proc(n, k) option remember; `if`(n=0 or k=1, 1, T(n, k-1) + `if`(n<k, 0, T(n-k, k))) end proc: seq(T(n*(n+1)*(2n+1)/6, n), n=0..20);
Search completed in 0.007 seconds
|