Displaying 1-6 of 6 results found.
page
1
Triangle of partial sums of rows in triangle A249095.
+20
5
1, 1, 2, 3, 1, 2, 4, 5, 6, 1, 2, 5, 7, 10, 11, 12, 1, 2, 6, 9, 15, 18, 22, 23, 24, 1, 2, 7, 11, 21, 27, 37, 41, 46, 47, 48, 1, 2, 8, 13, 28, 38, 58, 68, 83, 88, 94, 95, 96, 1, 2, 9, 15, 36, 51, 86, 106, 141, 156, 177, 183, 190, 191, 192, 1, 2, 10, 17, 45, 66
COMMENTS
Length of row n = 2*n+1.
In the layout as given in the example, T(n,k) is the sum of the two elements to the left and to the right of the element just above, with the row continued to the left by 0's and to the right by the last element, cf. formula. - M. F. Hasler, Nov 17 2014
FORMULA
T(n+1,k+1) = T(n,k-1) + T(n,k+1), with T(n,k-1)=0 for k<1 and T(n,k+1)=T(n,k) for k>=2n (last element of the row). In particular, T(n,k)=k+1 if k<2n and T(n,k)=3*2^(n-1) if k>=2n. - M. F. Hasler, Nov 17 2014
EXAMPLE
The triangle begins:
. 0: 1
. 1: 1 2 3
. 2: 1 2 4 5 6
. 3: 1 2 5 7 10 11 12
. 4: 1 2 6 9 15 18 22 23 24
. 5: 1 2 7 11 21 27 37 41 46 47 48
. 6: 1 2 8 13 28 38 58 68 83 88 94 95 96
. 7: 1 2 9 15 36 51 86 106 141 156 177 183 190 191 192
. 8: 1 2 10 17 45 66 122 157 227 262 318 339 367 374 382 383 384 .
It can be seen that the elements (except for row 1) are sum of the neighbors to the upper left and upper right, with the table continued to the left with 0's and to the right with the last = largest element of each row. E.g., 1=0+1, 2=0+2, 4=1+3, 5=2+3 (=1+4 in the next row), 6=3+3 (in row 2), 7=2+5 etc. - M. F. Hasler, Nov 17 2014
PROG
(Haskell)
a249111 n k = a249111_tabf !! n !! k
a249111_row n = a249111_tabf !! n
a249111_tabf = map (scanl1 (+)) a249095_tabf
(PARI) T(n, k)=if(k<2, k+1, if(k>=2*n-2, 3<<(n-1), T(n-1, k-2)+T(n-1, k))) \\ M. F. Hasler, Nov 17 2014
Triangle read by rows: A249095(n,k) * 2^k, k = 0 .. 2*n+1.
+20
5
1, 1, 2, 4, 1, 2, 8, 8, 16, 1, 2, 12, 16, 48, 32, 64, 1, 2, 16, 24, 96, 96, 256, 128, 256, 1, 2, 20, 32, 160, 192, 640, 512, 1280, 512, 1024, 1, 2, 24, 40, 240, 320, 1280, 1280, 3840, 2560, 6144, 2048, 4096, 1, 2, 28, 48, 336, 480, 2240, 2560, 8960, 7680
COMMENTS
Length of row n = 2*n+1;
for n > 0: sum of row n = 7*5^(n-1), cf. A005055.
PROG
(Haskell)
a249307 n k = a249307_tabf !! n !! k
a249307_row n = a249307_tabf !! n
a249307_tabf = map (zipWith (*) a000079_list) a249095_tabf
Central binomial coefficients C(2n,n) repeated.
+10
14
1, 1, 2, 2, 6, 6, 20, 20, 70, 70, 252, 252, 924, 924, 3432, 3432, 12870, 12870, 48620, 48620, 184756, 184756, 705432, 705432, 2704156, 2704156, 10400600, 10400600, 40116600, 40116600, 155117520, 155117520, 601080390, 601080390
COMMENTS
Number of 2n-bead balanced binary necklaces that are equivalent to their reverse. - Andrew Howroyd, Sep 29 2017
Number of ballot sequences of length n in which the vote is tied or decided by 1 vote. - Nachum Dershowitz, Aug 12 2020
Number of binary strings of length n that are abelian squares. - Michael S. Branicky, Dec 21 2020
FORMULA
G.f.: (1+x)/sqrt(1-4*x^2).
a(n) = C(n,n/2)*(1+(-1)^n)/2 + C(n-1,(n-1)/2)*(1-(-1)^n)/2.
a(n) = (1/Pi)*Integral_{x=-2..2} x^n*(1+x)/(x*sqrt(4-x^2)), as moment sequence.
E.g.f. of a(n+1): Bessel_I(0,2*x)+2*Bessel_I(1,2*x). - Paul Barry, Mar 26 2010
n*a(n) +(n-2)*a(n-1) +4*(-n+1)*a(n-2) +4*(-n+3)*a(n-3) = 0. - R. J. Mathar, Nov 26 2012
a(n) = 2^n*Product_{k=0..n-1} ((k/n+1/n)/2)^((-1)^k). - Peter Luschny, Dec 03 2013
MATHEMATICA
With[{cb=Table[Binomial[2n, n], {n, 0, 20}]}, Riffle[cb, cb]] (* Harvey P. Dale, Feb 17 2020 *)
PROG
(Haskell)
a128014 = a000984 . flip div 2
Convolution of binomial(1,n) and Gould's sequence A001316.
+10
10
1, 3, 4, 6, 6, 6, 8, 12, 10, 6, 8, 12, 12, 12, 16, 24, 18, 6, 8, 12, 12, 12, 16, 24, 20, 12, 16, 24, 24, 24, 32, 48, 34, 6, 8, 12, 12, 12, 16, 24, 20, 12, 16, 24, 24, 24, 32, 48, 36, 12, 16, 24, 24, 24, 32, 48, 40, 24, 32, 48, 48, 48, 64, 96, 66, 6, 8, 12, 12, 12, 16, 24, 20, 12, 16
COMMENTS
A universal function related to the spherical growth of repeated truncations of maps.
FORMULA
G.f. (1+x)*Product{k>=0, 1+2x^(2^k)};
a(n) = Sum_{k=0..n, binomial(1, n-k)*Sum_{j=0..k, binomial(k, j) mod 2}}.
EXAMPLE
If written as a triangle:
1;
3;
4;
6,6;
6,8,12,10;
6,8,12,12,12,16,24,18;
6,8,12,12,12,16,24,20,12,16,24,24,24,32,48,34;
6,8,12,12,12,16,24,20,12,16,24,24,24,32,48,36,12,16,24,24,24,32,48,40,24,32,48,48,48,64,96,66;
(End)
MAPLE
nmax := 74: A001316 := n -> if n <= -1 then 0 else 2^add(i, i=convert(n, base, 2)) fi: for p from 0 to ceil(log[2](nmax)) do for n from 1 to nmax/(p+2)+1 do a((2*n-1)*2^p) := (2^p+2) * A001316(n-1) od: od: a(0) :=1: seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 28 2013
MATHEMATICA
f[n_] := Sum[Binomial[1, n - k]Mod[Binomial[k, j], 2], {k, 0, n}, {j, 0, k}]; Array[f, 75, 0] (* Robert G. Wilson v, Jun 28 2010 *)
PROG
(Haskell)
a105321 n = if n == 0 then 1 else a001316 n + a001316 (n - 1)
(PARI) a(n) = sum(k=0, n, binomial(1, n-k)*sum(j=0, k, binomial(k, j) % 2)); \\ Michel Marcus, Apr 29 2018
Triangle read by rows: interleaving successive pairs of rows of Sierpiński's triangle.
+10
7
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0
COMMENTS
A105321(n) = number of ones in row n;
A249304(n) = number of zeros in row n;
EXAMPLE
. 0: 1
. 1: 1 1 1
. 2: 1 1 0 1 1
. 3: 1 1 1 0 1 1 1
. 4: 1 1 0 1 0 1 0 1 1
. 5: 1 1 1 0 0 0 0 0 1 1 1
. 6: 1 1 0 1 1 0 0 0 1 1 0 1 1
. 7: 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
. 8: 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1
. 9: 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
. 10: 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
. 11: 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1
. 12: 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1
. 13: 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1
. 14: 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1
. 15: 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
. 16: 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 .
MATHEMATICA
row[n_] := Mod[Riffle[Binomial[n, Range[0, n]], Binomial[n - 1, Range[0, n - 1]]], 2]; Table[row[n], {n, 0, 10}] // Flatten (* Amiram Eldar, Jul 28 2023 *)
PROG
(Haskell)
a249133 n k = a249133_tabf !! n !! k
a249133_row n = a249133_tabf !! n
a249133_tabf = map (map (flip mod 2)) a249095_tabf
Number of zeros in row n of triangle A249133.
+10
6
0, 0, 1, 1, 3, 5, 5, 3, 7, 13, 13, 11, 13, 15, 13, 7, 15, 29, 29, 27, 29, 31, 29, 23, 29, 39, 37, 31, 33, 35, 29, 15, 31, 61, 61, 59, 61, 63, 61, 55, 61, 71, 69, 63, 65, 67, 61, 47, 61, 87, 85, 79, 81, 83, 77, 63, 73, 91, 85, 71, 73, 75, 61, 31, 63, 125, 125
MATHEMATICA
Join[{0}, Plus @@@ Partition[Table[n + 1 - 2^DigitCount[n, 2, 1], {n, 0, 100}], 2, 1]] (* Amiram Eldar, Jul 28 2023 *)
PROG
(Haskell)
a249304 n = if n == 0 then 0 else a048967 n + a048967 (n - 1)
Search completed in 0.011 seconds
|