[go: up one dir, main page]

login
Search: a248348 -id:a248348
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = number of polynomials a_k*x^k + ... + a_1*x + n with k > 0, integer coefficients and only distinct integer roots.
+10
3
3, 11, 11, 23, 11, 43, 11, 47, 23, 43, 11, 103, 11, 43, 43, 83, 11, 103, 11, 103, 43, 43, 11, 223, 23, 43, 47, 103, 11, 187, 11, 139, 43, 43, 43, 275, 11, 43, 43, 223, 11, 187, 11, 103, 103, 43, 11, 427, 23, 103, 43, 103, 11, 223, 43, 223, 43, 43, 11, 503, 11, 43, 103, 227, 43, 187, 11, 103, 43, 187, 11, 635, 11, 43, 103, 103, 43, 187, 11
OFFSET
1,1
COMMENTS
If D_n is the set of all positive and negative divisors of n, then a(n) is the number of all subsets of D_n for which the product of all their elements is a divisor of n. a(n) depends only on the prime signature of n.
LINKS
EXAMPLE
a(1)=3: x + 1; -x + 1; -x^2 + 1.
PROG
(Python)
from itertools import chain, combinations
def powerset(iterable):
...s = list(iterable)
...return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
print("Start")
a_n = 0
for num in range(1, 1000):
...div_set = set((-1, 1))
...a_n = 0
...for divisor in range(1, num + 1):
......if (num % divisor == 0):
.........div_set.add(divisor)
.........div_set.add(divisor*(-1))
...pow_set = set(powerset(div_set))
...num_set = len(pow_set)
...for count_set in range(0, num_set):
......subset = set(pow_set.pop())
......num_subset = len(subset)
......prod = 1
......if num_subset < 1:
.........prod = 0
......for count_subset in range (0, num_subset):
.........prod = prod * subset.pop()
......if prod != 0:
.........if (num % prod == 0):
............a_n = a_n +1
...print(num, a_n)
print("Ende")
CROSSREFS
KEYWORD
nonn
AUTHOR
Reiner Moewald, Oct 06 2014
STATUS
approved
Number of polynomials a_k*x^k + ... + a_1*x + a_0 with k > 0, integer coefficients and only non-multiple positive integer roots and a_0 = p^n (p is a prime).
+10
3
1, 3, 5, 9, 13, 19, 27, 37, 49, 65, 85, 109, 139, 175, 219, 273, 337, 413, 505, 613, 741, 893, 1071, 1279, 1523, 1807, 2137, 2521, 2965, 3477, 4069, 4749, 5529, 6425, 7449, 8619, 9955, 11475, 13203, 15167, 17393, 19913, 22765, 25985, 29617, 33713, 38321, 43501
OFFSET
0,2
COMMENTS
If D_n = {p^0, ..., p^n} is the set of all positive divisors of p^n (p is a prime), then a(n) gives the number of all subsets of D_n for which the product of all their elements is a divisor of p^n. Furthermore, a(n) gives the number of all strict partitions of n including the integer 0.
LINKS
FORMULA
a(n) = -1 + 2*Sum_{k=0..n} a*(k) where a*(n) = A000009(n).
a(n) = A248955(p^n), where p is any prime. - Michel Marcus, Nov 07 2014
a(n) = 2*A036469(n) - 1. - Hiroaki Yamanouchi, Nov 21 2014
EXAMPLE
a(1) = 3: -p*x+p; -x+p; x^2 - (p+1)*x + p.
CROSSREFS
Partial sums of A087135.
KEYWORD
nonn
AUTHOR
Reiner Moewald, Oct 17 2014
EXTENSIONS
a(20)-a(22) from Michel Marcus, Nov 07 2014
a(23)-a(47) from Hiroaki Yamanouchi, Nov 21 2014
STATUS
approved

Search completed in 0.011 seconds