OFFSET
1,3
COMMENTS
Smallest integer value of the form 1/z(k,n) where z(k,x)=x/(x-1)^2 -sum(i=1,k,i/x^i).
For any x>1 lim k -> infinity z(k,x)=0. More generally if p is an integer >=2, 1/z(u(k),p) is an integer for any k>=2 where u(k)=(p-1)^2*p^((p^k-(p-1)*k-p)/(p-1)). u(k) can also be written : u(k)=(p-1)^2 *p^(1+p+p^2+...+p^(k-2)).
For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,...,n} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,...,n} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, May 10 2007
a(n+1) = Sum_{k=0...n} binomial(n,k)*n^k*k, which enumerates the total number of elements in the domain of definition over all partial functions on n labeled objects. - Geoffrey Critzer, Feb 08 2012
Also, the number of possible negation tables in the n-valued logics (cf. A262458 and A262459). - Max Alekseyev, Sep 23 2015
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..386
Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
MATHEMATICA
Table[Sum[Binomial[n, k] n^k k, {k, 0, n}], {n, 1, 20}] (* Geoffrey Critzer, Feb 08 2012 *)
PROG
(PARI) a(n) = (n-1)^2*n^(n-2)
CROSSREFS
Column k=0 of A245692.
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 25 2002
EXTENSIONS
a(1)=0 prepended by Max Alekseyev, Sep 23 2015
Some terms corrected by Alois P. Heinz, May 22 2016
STATUS
approved