[go: up one dir, main page]

login
Search: a241660 -id:a241660
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes in the hexanacci numbers sequence A000383.
+10
12
11, 41, 72426721, 143664401, 565262081, 4160105226881, 253399862985121, 997027328131841, 212479323351825962211841, 188939838859312612896128881921, 22828424707602602744356458636161, 661045104283639247572028952777478721
OFFSET
1,1
COMMENTS
a(13) is too large to display here. It has 62 digits and is the 210th term in A000383.
MATHEMATICA
a={1, 1, 1, 1, 1, 1}; For[n=6, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[5]]=sum]
KEYWORD
nonn
AUTHOR
Robert Price, Dec 03 2014
STATUS
approved
Primes in the 7th-order Fibonacci numbers A060455.
+10
2
7, 13, 97, 193, 769, 1531, 3049, 6073, 12097, 24097, 95617, 379399, 2998753, 187339729, 373174033, 2949551617, 184265983633, 731152932481, 88025699967469825543, 175344042716296888429, 4979552865927484193343796114081304399449
OFFSET
1,1
COMMENTS
a(22) is too large to display here. It has 53 digits and is the 180th term in A060455.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..34
MATHEMATICA
a={1, 1, 1, 1, 1, 1, 1}; step=7; lst={}; For[n=step, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst, sum]]; a=RotateLeft[a]; a[[7]]=sum]; lst
With[{c=PadRight[{}, 7, 1]}, Select[LinearRecurrence[c, c, 150], PrimeQ]] (* Harvey P. Dale, May 08 2015 *)
PROG
(PARI) lista(nn) = {gf = ( -1+x^2+2*x^3+3*x^4+4*x^5+5*x^6 ) / ( -1+x+x^2+x^3+x^4+x^5+x^6+x^7 ); for (n=0, nn, if (isprime(p=polcoeff(gf+O(x^(n+1)), n)), print1(p, ", ")); ); } \\ Michel Marcus, Jan 11 2015
KEYWORD
nonn
AUTHOR
Robert Price, Dec 30 2014
STATUS
approved
Primes in the 8th-order Fibonacci numbers A123526.
+10
2
29, 113, 449, 226241, 14307889, 113783041, 1820091580429249, 233322881089059894782836851617, 29566627412209231076314948970028097, 59243719929958343565697204780596496129, 7507351981539044730893385057192143660843521
OFFSET
1,1
COMMENTS
a(12) is too large to display here. It has 46 digits and is the 158th term in A123526.
MATHEMATICA
a={1, 1, 1, 1, 1, 1, 1, 1}; step=8; lst={}; For[n=step+1, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst, sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
Select[With[{lr=PadRight[{}, 8, 1]}, LinearRecurrence[lr, lr, 200]], PrimeQ] (* Harvey P. Dale, Dec 03 2022 *)
KEYWORD
nonn
AUTHOR
Robert Price, Jan 30 2015
STATUS
approved
Primes in the pentanacci numbers sequence A000322.
+10
1
5, 17, 977, 28697, 56417, 1428864769, 2809074173, 21344178433, 626815657409, 18407729752001, 2317881588988297338942875602391948125494800020122167809, 136507010958920295813169620935932629930648432530102206331972221346174230852977164801
OFFSET
1,1
COMMENTS
a(13) is too large to display here. It has 132 digits and is the 450th term in A000322.
LINKS
MATHEMATICA
a={1, 1, 1, 1, 1}; For[n=5, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[5]]=sum]
Select[With[{c={1, 1, 1, 1, 1}}, LinearRecurrence[c, c, 300]], PrimeQ] (* Harvey P. Dale, Nov 30 2019 *)
KEYWORD
nonn
AUTHOR
Robert Price, Oct 16 2014
STATUS
approved
Primes in the 8th-order Fibonacci numbers A079262.
+10
1
2, 509, 128257, 133294824621464999938178340471931877, 4596852049500861351052672455121859744010232939954169259264638023409631672658340253083284317818242062413
OFFSET
1,1
COMMENTS
a(6) is too large to display here. It has 395 digits and is the 1322nd term in A079262.
MATHEMATICA
a={0, 0, 0, 0, 0, 0, 0, 1}; step=8; lst={}; For[n=step, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst, sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
PROG
(PARI) lista(nn) = {gf = x^7/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8); for (n=0, nn, if (isprime(p=polcoeff(gf+O(x^(n+1)), n)), print1(p, ", ")); ); } \\ Michel Marcus, Jan 12 2015
KEYWORD
nonn
AUTHOR
Robert Price, Jan 09 2015
STATUS
approved
Primes in A001630.
+10
0
2, 3, 23, 60217, 108412217573460833, 143003097309669584171480759
OFFSET
1,1
COMMENTS
a(7) is too large to display here. It has 206 digits and is the 722nd term in A001630.
MATHEMATICA
a={0, 0, 1, 2}; Print[2]; For[n=4, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[4]]=sum]
KEYWORD
nonn
AUTHOR
Robert Price, Apr 26 2014
EXTENSIONS
a(1)=2 prepended and Mathematica program corrected by Robert Price, Sep 09 2014
STATUS
approved
Primes in tetranacci sequence A001631.
+10
0
2, 7, 193, 19079, 1823013184807, 324494495853101147203936847, 16085434555484907108254435283952049, 255525859571903290673264616283734506003204622439226993660213169027169
OFFSET
1,1
COMMENTS
a(9) is too large to display here. It has 160 digits and is the 564th term in A001631.
MATHEMATICA
a={0, 0, 1, 0}; For[n=4, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[4]]=sum]
KEYWORD
nonn
AUTHOR
Robert Price, Sep 09 2014
STATUS
approved
Primes in the tetranacci sequence A000288.
+10
0
7, 13, 181, 349, 673, 1297, 34513, 90799453, 175021573, 4657290577, 17304140641, 1131469145856472270556751793, 1544310310927991136025089626209, 1442398599584422734286432395814518441223501, 18598135820391234761502881488353916158281807617671450769
OFFSET
1,1
COMMENTS
a(16) is too large to display here. It has 63 digits and is the 221st term in A000288.
MATHEMATICA
a={1, 1, 1, 1}; For[n=4, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[4]]=sum]
Select[LinearRecurrence[{1, 1, 1, 1}, {1, 1, 1, 1}, 300], PrimeQ] (* Harvey P. Dale, Jan 15 2015 *)
KEYWORD
nonn
AUTHOR
Robert Price, Sep 27 2014
STATUS
approved

Search completed in 0.007 seconds