[go: up one dir, main page]

login
Search: a241091 -id:a241091
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions p of n into distinct parts such that max(p) = 1 + 2*(number of parts of p).
+10
3
0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 7, 7, 8, 9, 10, 10, 12, 13, 15, 17, 19, 21, 25, 26, 29, 32, 35, 38, 42, 46, 51, 57, 62, 69, 76, 83, 90, 100, 107, 117, 127, 139, 150, 165, 178, 195, 212, 231, 250, 273, 294, 319, 346, 373, 402
OFFSET
0,13
FORMULA
a(n) + A241086(n) + A241093(n) = A000009(n) for n >= 1.
a(n) = A241091(n) - A241086(n) for n >= 0.
EXAMPLE
a(12) counts these 5 partitions: 741, 732, 651, 642, 6321, 543, 5421.
MATHEMATICA
z = 30; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
Table[Count[f[n], p_ /; Max[p] < 1 + 2*Length[p]], {n, 0, z}] (*A241086*)
Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Length[p]], {n, 0, z}](*A241091*)
Table[Count[f[n], p_ /; Max[p] == 1 + 2*Length[p]], {n, 0, z}](*A241092*)
Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Length[p]], {n, 0, z}](*A241089*)
Table[Count[f[n], p_ /; Max[p] > 1 + 2*Length[p]], {n, 0, z}] (*A241093*)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 18 2014
STATUS
approved
Number of partitions p of n into distinct parts such that max(p) > 1 + 2*(number of parts of p).
+10
3
0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 5, 7, 8, 11, 13, 17, 21, 26, 31, 38, 45, 54, 65, 77, 92, 108, 128, 149, 175, 203, 237, 274, 318, 366, 424, 486, 559, 640, 733, 836, 953, 1084, 1232, 1398, 1583, 1792, 2025, 2286, 2576, 2902, 3262, 3666, 4111, 4610, 5160, 5774
OFFSET
0,8
FORMULA
a(n) + A241086(n) + A241093(n) = A000009(n) for n >= 1.
EXAMPLE
a(12) counts these 8 partitions: {12}, {11,1}, {10,2}, {9,3}, 9,2,1}, {8,4}, {8,3,1}, {7,5}.
MATHEMATICA
z = 30; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
Table[Count[f[n], p_ /; Max[p] < 1 + 2*Length[p]], {n, 0, z}] (*A241086*)
Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Length[p]], {n, 0, z}](*A241091*)
Table[Count[f[n], p_ /; Max[p] == 1 + 2*Length[p]], {n, 0, z}](*A241092*)
Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Length[p]], {n, 0, z}](*A241089*)
Table[Count[f[n], p_ /; Max[p] > 1 + 2*Length[p]], {n, 0, z}] (*A241093*)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 18 2014
STATUS
approved

Search completed in 0.008 seconds