OFFSET
0,1
COMMENTS
Fraction of numbers which are sqrt-smooth, see A048098 and A063539. - Charles R Greathouse IV, Jul 14 2014
Asymptotic survival probability in the 100 prisoners problem. - Alois P. Heinz, Jul 08 2022
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.
LINKS
Donald E. Knuth and Luis Trabb Pardo, Analysis of a simple factorization algorithm, Theoretical Computer Science 3:3 (1976), pp. 321-348.
The Ramanujan Machine, Using algorithms to discover new mathematics.
Wikipedia, 100 prisoners problem
FORMULA
From Amiram Eldar, Aug 07 2020: (Start)
Equals Sum_{k>=1} 1/(k*(k+1)*2^k) = Sum_{k>=2} 1/A100381(k).
Equals Sum_{k>=2} (-1)^k * zeta(k)/2^k.
Equals Integral_{x=1..oo} 1/(x^2 + x^3) dx. (End)
Equals lim_{n->oo} A024168(n)/n!. - Alois P. Heinz, Jul 08 2022
Equals 1/(4 - 4/(7 - 12/(10 - ... - 2*n*(n-1)/((3*n+1) - ...)))) (an equivalent continued fraction for 1 - log(2) was conjectured by the Ramanujan machine). - Peter Bala, Mar 04 2024
Equals Sum_{k>=1} zeta(2*k)/((2*k + 1)*2^(2*k-1)) (see Finch). - Stefano Spezia, Nov 02 2024
EXAMPLE
0.30685281944005469058276787854...
MAPLE
f:= sum(1/(2*k*(2*k+1)), k=1..infinity):
s:= convert(evalf(f, 140), string):
seq(parse(s[i+1]), i=1..106); # Alois P. Heinz, Jun 17 2014
MATHEMATICA
RealDigits[1-Log[2], 10, 120][[1]] (* Harvey P. Dale, Sep 23 2016 *)
PROG
(PARI) 1-log(2) \\ Charles R Greathouse IV, Jul 14 2014
CROSSREFS
KEYWORD
AUTHOR
Franklin T. Adams-Watters, Jun 17 2014
STATUS
approved