[go: up one dir, main page]

login
Search: a232540 -id:a232540
     Sort: relevance | references | number | modified | created      Format: long | short | data
n(n+1)/2 modulo sigma(n).
+10
11
0, 0, 2, 3, 3, 9, 4, 6, 6, 1, 6, 22, 7, 9, 0, 12, 9, 15, 10, 0, 7, 1, 12, 0, 15, 15, 18, 14, 15, 33, 16, 24, 33, 1, 6, 29, 19, 21, 52, 10, 21, 39, 22, 66, 21, 1, 24, 60, 28, 66, 30, 6, 27, 45, 28, 36, 53, 1, 30, 150, 31, 33, 40, 48, 45, 51, 34, 78, 15, 37, 36
OFFSET
1,3
COMMENTS
Also antisigma(n) modulo sigma(n). Antisigma(n) = A024816(n) = the sum of the nondivisors of n that are between 1 and n, sigma(n) = A000203(n) = the sum of the divisors of n.
a(n) = 0 for numbers from A076617, a(n) = 1 for numbers from A232540, a(n) = n for numbers from A232538.
LINKS
FORMULA
a(n) = n(n+1)/2 mod A000203(n).
EXAMPLE
For n=10, a(10) = antisigma(10) mod sigma(10) = 37 mod 18 = 1.
MATHEMATICA
Table[Mod[n (n + 1)/2, DivisorSigma[1, n]], {n, 100}] (* T. D. Noe, Nov 27 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Nov 25 2013
STATUS
approved
Numbers n such that (n(n+1)/2) modulo sigma(n) = n.
+10
2
33, 136, 145, 261, 897, 1441, 2016, 2241, 2353, 3808, 4320, 7201, 17101, 26937, 30721, 32896, 46593, 70561, 148960, 151633, 169345, 174592, 208801, 400401, 578593, 712801, 803800, 1040401, 1103233, 1596673, 2265121, 2377089, 3330001, 4357153, 5953024, 5962321
OFFSET
1,1
COMMENTS
Also numbers n such that antisigma(n) modulo sigma(n) = n. Antisigma(n) = A024816(n) = the sum of the nondivisors of n that are between 1 and n, sigma(n) = A000203(n) = the sum of the divisors of n.
Numbers n such that A232324(n) = n.
a(19) > 10^5.
FORMULA
A232324(a(n)) = n.
EXAMPLE
136 is in sequence because antisigma(136) mod sigma(136) = 9046 mod 270 = 136.
MATHEMATICA
Select[Range[6*10^6], Mod[(#(#+1))/2, DivisorSigma[1, #]]==#&] (* Harvey P. Dale, Sep 12 2019 *)
PROG
(PARI) isok(n) = (n*(n+1)/2 - sigma(n)) % sigma(n) == n; \\ Michel Marcus, Nov 25 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Nov 25 2013
EXTENSIONS
More terms from Michel Marcus, Nov 25 2013
STATUS
approved

Search completed in 0.008 seconds