[go: up one dir, main page]

login
Search: a229302 -id:a229302
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers n such that A031971(1806*n) == n (mod 1806*n).
+0
17
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 56, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81
OFFSET
1,2
COMMENTS
Complement of A229304.
The asymptotic density is in [0.7747,0.812570].
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. (Comment corrected and expanded by Jonathan Sondow, Dec 10 2013.)
MATHEMATICA
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], g[1806*#] == # &]
CROSSREFS
Cf. A231562 (numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n)).
Cf. A229312 (numbers n such that A031971(47058*n) == n (mod 47058*n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229313 (numbers n such that A031971(47058*n) <> n (mod 47058*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
Cf. A054377 (primary pseudoperfect numbers).
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers n such that A031971(42*n) == n (mod 42*n).
+0
17
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 49, 51, 53, 54, 56, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82
OFFSET
1,2
COMMENTS
Complement of A229305.
The asymptotic density is in [0.7880, 0.8079].
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. (Comment corrected and expanded by Jonathan Sondow, Dec 10 2013.)
LINKS
Jose María Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n
MAPLE
filter:= proc(n) local t, k;
t:= add(k &^ (42*n) mod (42*n), k=1..42*n);
t mod (42*n) = n
end proc:
select(filter, [$1..100]); # Robert Israel, Dec 15 2020
MATHEMATICA
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], g[42*#] == # &]
CROSSREFS
Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers m such that A031971(2*m) == m (mod 2*m).
+0
19
1, 2, 4, 5, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 41, 43, 44, 46, 47, 49, 52, 53, 56, 58, 59, 61, 62, 64, 65, 67, 68, 71, 73, 74, 76, 77, 79, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 101, 103, 104, 106, 107, 109, 112, 113, 115, 116, 118, 119, 121, 122, 124, 125
OFFSET
1,2
COMMENTS
Complement of A229307.
The asymptotic density is in [0.583154, 0.58455].
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by Jonathan Sondow, Dec 10 2013]
Up to (but excluding) the term 68 the exponents of even prime powers with squarefree neighbors. - Juri-Stepan Gerasimov, Apr 30 2016.
LINKS
Jose María Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n
MAPLE
a:= proc(n) option remember; local m;
for m from 1+`if`(n=1, 0, a(n-1)) do
if (t-> m=(add(k&^t mod t, k=1..t) mod t))(2*m)
then return m fi
od
end:
seq(a(n), n=1..200); # Alois P. Heinz, May 01 2016
MATHEMATICA
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], g[2*#] == # &]
PROG
(PARI) b(n)=sum(k=1, n, Mod(k, n)^n);
for(n=1, 200, if(b(2*n)==n, print1(n, ", ")));
\\ Joerg Arndt, May 01 2016
CROSSREFS
Cf. A014117 (numbers k such that A031971(k)==1 (mod k)).
Cf. A229300 (numbers k such that A031971(1806*k)== k (mod 1806*k)).
Cf. A229301 (numbers k such that A031971(42*k) == k (mod 42*k)).
Cf. A229302 (numbers k such that A031971(6*k) == k (mod 6*k)).
Cf. A229303 (numbers k such that A031971(2*k) == k (mod 2*k)).
Cf. A229304 (numbers k such that A031971(1806*k) <> k (mod 1806*k)).
Cf. A229305 (numbers k such that A031971(42*k) <> k (mod 42*k)).
Cf. A229306 (numbers k such that A031971(6*k) <> k (mod 6*k)).
Cf. A229307 (numbers k such that A031971(2*k) <> k (mod 2*k)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers n such that A031971(1806*n) <> n (mod 1806*n).
+0
16
10, 20, 26, 30, 40, 50, 52, 55, 57, 58, 60, 70, 78, 80, 90, 100, 104, 110, 114, 116, 120, 130, 136, 140, 150, 155, 156, 160, 165, 170, 171, 174, 180, 182, 190, 200, 208, 210, 220, 222, 228, 230, 232, 234, 240, 250, 253, 260, 270, 272, 275, 280, 285, 286, 290
OFFSET
1,1
COMMENTS
Complement of A229300.
The asymptotic density is in [0.1921, 0.212].
If n is in A then k*n is in A for all natural number k.
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by Jonathan Sondow, Dec 10 2013]
MATHEMATICA
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], !g[1806*#] == # &]
CROSSREFS
Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers n such that A031971(42*n) <> n (mod 42*n).
+0
16
10, 20, 26, 30, 40, 43, 50, 52, 55, 57, 58, 60, 70, 78, 80, 86, 90, 100, 104, 110, 114, 116, 120, 129, 130, 136, 140, 150, 155, 156, 160, 165, 170, 171, 172, 174, 180, 182, 190, 200, 208, 210, 215, 220, 222, 228, 230, 232, 234, 240, 250, 253, 258, 260, 270
OFFSET
1,1
COMMENTS
Complement of A229301.
The asymptotic density is in [0.2091, 0.2317].
If n is in A then k*n is in A for all natural number k.
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by Jonathan Sondow, Dec 10 2013]
MATHEMATICA
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], !g[42*#] == # &]
CROSSREFS
Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers n such that A031971(6*n) <> n (mod 6*n)
+0
16
7, 10, 14, 20, 21, 26, 28, 30, 35, 40, 42, 49, 50, 52, 55, 56, 57, 60, 63, 70, 77, 78, 80, 84, 90, 91, 98, 100, 104, 105, 110, 112, 114, 119, 120, 126, 130, 133, 136, 140, 147, 150, 154, 155, 156, 160, 161, 165, 168, 170, 171, 175, 180, 182, 189, 190, 196
OFFSET
1,1
COMMENTS
Complement of A229302.
The asymptotic density is in [0.2927, 0.3014].
If n is in A then k*n is in A for all natural number k.
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by Jonathan Sondow, Dec 10 2013]
MATHEMATICA
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], !g[6*#] == # &]
CROSSREFS
Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers k such that A031971(2*k) <> k (mod 2*k).
+0
19
3, 6, 9, 10, 12, 15, 18, 20, 21, 24, 27, 30, 33, 36, 39, 40, 42, 45, 48, 50, 51, 54, 55, 57, 60, 63, 66, 69, 70, 72, 75, 78, 80, 81, 84, 87, 90, 93, 96, 99, 100, 102, 105, 108, 110, 111, 114, 117, 120, 123, 126, 129, 130, 132, 135, 136, 138, 140, 141, 144
OFFSET
1,1
COMMENTS
Complement of A229303.
The asymptotic density is in [0.41545, 0.416846].
If n is in A then k*n is in A for all natural number k.
The numbers k = 1, 2, 6, 42, 1806, 47058, 2214502422, 8490421583559688410706771261086 = A230311 are the only values of k such that the set {n: A031971(k*n) == n (mod k*n)} is nonempty. Its smallest element is n = 1, 1, 1, 1, 1, 5, 5, 39607528021345872635 = A231409. [Comment corrected and expanded by Jonathan Sondow, Dec 10 2013]
LINKS
José María Grau, Antonio M. Oller-Marcén and Jonathan Sondow, On the congruence 1^m + 2^m + ... + m^m = n (mod m), with n|m, Monatshefte für Mathematik, Vol. 177, No. 3 (2015), pp. 421-436, preprint, arXiv:1309.7941 [math.NT], 2013-2014.
MATHEMATICA
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[500], !g[2*#] == # &]
CROSSREFS
Cf. A031971.
Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
KEYWORD
nonn
AUTHOR
STATUS
approved
Primitive numbers in A229304.
+0
16
10, 26, 55, 57, 58, 136, 155, 222, 253, 346, 355, 381, 737, 876, 904, 1027, 1055, 1081, 1552, 1711, 1751, 1962, 2155, 2696, 2758, 3197, 3403, 3411, 3775, 3916, 4063, 4132, 4401, 5093, 5671, 6176, 6455, 6567, 7111, 7226, 8251, 8515, 8702, 9294, 9316, 9465
OFFSET
1,1
MATHEMATICA
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, 1, n}], n]; tachar[lis_, num_] := Select[lis, ! IntegerQ[#1/num] &]; primi[{}] = {}; primi[lis_] := Join[{lis[[1]]}, primi[tachar[lis, lis[[1]]]]]; primi@Select[Range[70], ! g[1806*#] == # &]
CROSSREFS
Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
KEYWORD
nonn
AUTHOR
STATUS
approved
Primitive numbers in A229305.
+0
16
10, 26, 43, 55, 57, 58, 136, 155, 222, 253, 355, 381, 737, 876, 904, 1027, 1055, 1081, 1552, 1711, 1751, 1962, 2696, 2758, 3197, 3403, 3411, 3775, 3916, 4063, 4401, 5093, 5671, 6176, 6567, 7111, 8251, 8515, 8702, 9316, 9465, 10768, 11026, 12195, 12742, 13301
OFFSET
1,1
MATHEMATICA
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, 1, n}], n]; tachar[lis_, num_] := Select[lis, ! IntegerQ[#1/num] &]; primi[{}]={}; primi[lis_] := Join[{lis[[1]]}, primi[tachar[lis, lis[[1]]]]]; primi@Select[Range[80], !g[42*#] == # &]
CROSSREFS
Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
KEYWORD
nonn
AUTHOR
STATUS
approved
Primitive numbers in A229306.
+0
16
7, 10, 26, 55, 57, 136, 155, 222, 253, 737, 876, 1027, 1081, 1552, 1711, 1751, 1962, 3197, 3403, 3775, 3916, 4401, 5671, 6176, 6567, 8251, 8515, 8702, 9316, 11026, 12195, 12742, 13301, 13861, 14878, 15657, 15931, 18145, 20242, 22387, 23126, 25651, 26202
OFFSET
1,1
MATHEMATICA
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, 1, n}], n]; tachar[lis_, num_] := Select[lis, ! IntegerQ[#1/num] &]; primi[{}]={}; primi[lis_] := Join[{lis[[1]]}, primi[tachar[lis, lis[[1]]]]]; primi@Select[Range[500], !g[6*#] == # &]
CROSSREFS
Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.015 seconds