OFFSET
0,2
COMMENTS
Denominators are found under A120087.
See the W. Lang link under A120080 for more details on the general case D(n,x), n= 1, 2, ... D(4,x) is the e.g.f. of the rational sequence {4*B(n)/(n+4)}, n >= 0. See A227573/A227574. - Wolfdieter Lang, Jul 17 2013
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..600
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=1, with a factor (x^4)/4 extracted.
Wolfdieter Lang, Rationals r(n).
FORMULA
a(n) = numerator(r(n)), with r(n) = [x^n](1 - 4*x/(2*(4+1)) + 2*Sum_{k >= 0} (B(2*k)/((k+2)*(2*k)!))*x^(2*k) ), |x| < 2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = numerator(4*B(n)/((n+4)*n!)), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n). From D(4,x) read as o.g.f. - Wolfdieter Lang, Jul 17 2013
EXAMPLE
Rationals r(n): [1, -2/5, 1/18, 0, -1/1440, 0, 1/75600, 0, -1/3628800, 0, 1/167650560, 0, -691/5230697472000, ...].
MATHEMATICA
r[n_]:= 4*BernoulliB[n]/((n+4)*n!); Table[r[n]//Numerator, {n, 0, 36}] (* Jean-François Alcover, Jun 21 2013 *)
PROG
(Magma) [Numerator(4*(n+1)*(n+2)*(n+3)*Bernoulli(n)/Factorial(n+4)): n in [0..50]]; // G. C. Greubel, May 02 2023
(SageMath) [numerator(4*(n+1)*(n+2)*(n+3)*bernoulli(n)/factorial(n+4)) for n in range(51)] # G. C. Greubel, May 02 2023
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Wolfdieter Lang, Jul 20 2006
STATUS
approved