[go: up one dir, main page]

login
Search: a227573 -id:a227573
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numerators of expansion of Debye function for n=4: D(4,x).
+10
7
1, -2, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373
OFFSET
0,2
COMMENTS
Denominators are found under A120087.
See the W. Lang link under A120080 for more details on the general case D(n,x), n= 1, 2, ... D(4,x) is the e.g.f. of the rational sequence {4*B(n)/(n+4)}, n >= 0. See A227573/A227574. - Wolfdieter Lang, Jul 17 2013
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=1, with a factor (x^4)/4 extracted.
Wolfdieter Lang, Rationals r(n).
FORMULA
a(n) = numerator(r(n)), with r(n) = [x^n](1 - 4*x/(2*(4+1)) + 2*Sum_{k >= 0} (B(2*k)/((k+2)*(2*k)!))*x^(2*k) ), |x| < 2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = numerator(4*B(n)/((n+4)*n!)), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n). From D(4,x) read as o.g.f. - Wolfdieter Lang, Jul 17 2013
EXAMPLE
Rationals r(n): [1, -2/5, 1/18, 0, -1/1440, 0, 1/75600, 0, -1/3628800, 0, 1/167650560, 0, -691/5230697472000, ...].
MATHEMATICA
r[n_]:= 4*BernoulliB[n]/((n+4)*n!); Table[r[n]//Numerator, {n, 0, 36}] (* Jean-François Alcover, Jun 21 2013 *)
PROG
(Magma) [Numerator(4*(n+1)*(n+2)*(n+3)*Bernoulli(n)/Factorial(n+4)): n in [0..50]]; // G. C. Greubel, May 02 2023
(SageMath) [numerator(4*(n+1)*(n+2)*(n+3)*bernoulli(n)/factorial(n+4)) for n in range(51)] # G. C. Greubel, May 02 2023
CROSSREFS
Cf. A060054. [From R. J. Mathar, Aug 07 2008]
Cf. A000367/A002445, A027641/A027642, A120097, A227573/A227574 (D(4,x) as e.g.f.). - Wolfdieter Lang, Jul 17 2013
KEYWORD
sign,frac
AUTHOR
Wolfdieter Lang, Jul 20 2006
STATUS
approved
Denominators of expansion of Debye function for n=4: D(4,x).
+10
6
1, 5, 18, 1, 1440, 1, 75600, 1, 3628800, 1, 167650560, 1, 5230697472000, 1, 336259123200, 1, 53353114214400000, 1, 28100018194440192000, 1, 4817145976189747200000, 1, 91657150256046735360000, 1
OFFSET
0,2
COMMENTS
From Wolfdieter Lang, Jul 17 2013: (Start)
The numerators are given in A120086.
See the link under A120080 for D(n,4) as e.g.f. of 4*B(n)/(n+4) = A227573(n)/A227574(n), n>= 0. (End)
LINKS
FORMULA
a(n) = denominator(r(n)), with r(n) = [x^n](1 - 2*x/5 + 2*Sum_{k >= 0}(B(2*k)/((k+2)*(2*k)!))*x^(2*k) ), |x| < 2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = denominator(4*B(n)/((n+4)*n!), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n). From D(4,x) read as o.g.f. _ Wolfdieter Lang, Jul 17 2013
EXAMPLE
Rationals r(n): [1, -2/5, 1/18, 0, -1/1440, 0, 1/75600, 0, -1/3628800, 0, 1/167650560, 0, -691/5230697472000, ...].
MATHEMATICA
Table[Denominator[4*BernoulliB[n]/((n+4)*n!)], {n, 0, 50}] (* G. C. Greubel, May 02 2023 *)
PROG
(Magma) [Denominator(4*(n+1)*(n+2)*(n+3)*Bernoulli(n)/Factorial(n+4)): n in [0..50]]; // G. C. Greubel, May 02 2023
(SageMath) [denominator(4*(n+1)*(n+2)*(n+3)*bernoulli(n)/factorial(n+4)) for n in range(51)] # G. C. Greubel, May 02 2023
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jul 20 2006
STATUS
approved
Numerators of rationals with e.g.f. D(3,x), a Debye function.
+10
4
1, -3, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -7709321041217, 0, 2577687858367, 0, -26315271553053477373, 0, 2929993913841559, 0, -261082718496449122051
OFFSET
0,2
COMMENTS
The denominators are given in A227571.
For general remarks on the e.g.f.s D(n,x), the Debye function with index n = 1, 2, 3, ... see the W. Lang link under A120080.
D(3,x) := (3/x^3)*int(t^3/(exp(x) - 1), t=0..x) is the e.g.f. of the rationals r(3,n) = 3*B(n)/(n+3), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n).
See the Abramowitz-Stegun link for the integral appearing in
D(3,x) and a series expansion valid for |x| < 2*Pi.
Initially coincides with A176327, A164555 and A027641 for n <> 1. - R. J. Mathar, Aug 13 2013
Differs from these sequences at n = 1292, 2624, 2770, 2778.... - Andrey Zabolotskiy, Dec 08 2023
REFERENCES
L. D. Landau, E. M. Lifschitz: Lehrbuch der Theoretischen Physik, Band V: Statistische Physik, Akademie Verlag, Leipzig, p. 195, equ. (63.5), and footnote 1 on p. 197.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=3, with a factor (x^3)/3 extracted.
FORMULA
a(n) = numerator(3*B(n)/(n+3)), n >= 0, with the Bernoulli numbers B(n).
EXAMPLE
The rationals r(3,n), n=0..15 are: 1, -3/8, 1/10, 0, -1/70, 0, 1/126, 0, -1/110, 0, 5/286, 0, -691/13650, 0, 7/34, 0.
MATHEMATICA
A227570[n_]:=Numerator[3BernoulliB[n]/(n+3)];
Array[A227570, 50, 0] (* Paolo Xausa, Dec 08 2023 *)
PROG
(Sage)
print([(bernoulli(n)*3/(n+3)).numerator() for n in range(30)]) # Andrey Zabolotskiy, Dec 08 2023
CROSSREFS
Cf. A227571, A227573, A027641/A027642, A120080/A120081 (D(3,x) as o.g.f.).
KEYWORD
sign,easy,frac
AUTHOR
Wolfdieter Lang, Jul 16 2013
STATUS
approved
Denominators of rationals with e.g.f. D(4,x), a Debye function.
+10
4
1, 5, 9, 1, 60, 1, 105, 1, 90, 1, 231, 1, 10920, 1, 27, 1, 2550, 1, 4389, 1, 1980, 1, 897, 1, 19110, 1, 45, 1, 6960, 1, 121737, 1, 4590, 1, 57, 1, 19191900, 1, 63, 1, 148830, 1, 20769, 1, 8280, 1, 3525, 1, 603330, 1, 891, 1, 22260, 1, 11571, 1, 13050, 1
OFFSET
0,2
COMMENTS
See the comments and the Abramowitz-Stegun link under A227573.
FORMULA
a(n) = denominator(4*B(n)/(n+4)), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n).
The e.g.f. of the rationals r(4,n) := 4*B(n)/(n+4) is D(4,x) = (4/x^4)*int(t^4/(exp(t) - 1), t=0..x).
EXAMPLE
The rationals r(4,n), n=0..15 are: 1, -2/5, 1/9, 0, -1/60, 0, 1/105, 0, -1/90, 0, 5/231, 0, -691/10920, 0, 7/27, 0.
MATHEMATICA
A227574[n_]:=Denominator[4BernoulliB[n]/(n+4)];
Array[A227574, 100, 0] (* Paolo Xausa, Dec 08 2023 *)
CROSSREFS
Cf. A227573, A027641/A027642, A120086/A120087 (D(4,x) as o.g.f.).
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jul 17 2013
STATUS
approved

Search completed in 0.006 seconds