[go: up one dir, main page]

login
Search: a225195 -id:a225195
     Sort: relevance | references | number | modified | created      Format: long | short | data
Lesser of consecutive primes whose average is a perfect power.
+10
3
3, 7, 61, 79, 139, 223, 317, 439, 619, 1087, 1669, 1723, 2593, 3593, 4093, 5179, 6079, 8461, 12541, 13687, 16633, 17573, 19037, 19597, 21943, 25261, 27211, 28219, 29581, 36857, 38011, 39199, 45361, 46649, 47521, 51977, 56167, 74527, 87013, 88801, 91807, 92413, 95479
OFFSET
1,1
LINKS
EXAMPLE
4093 is in the sequence because 4093 and 4099 are consecutive primes and (4093 + 4099)/2 = 4096 = 2^12.
MATHEMATICA
Select[Partition[Prime[Range[2, 10^4]], 2, 1], GCD @@ FactorInteger[(First[#] + Last[#])/2][[;; , 2]] > 1 &][[;; , 1]] (* Amiram Eldar, Jul 04 2022 *)
PROG
(PARI) for(i=3, 10^5, if(isprime(i), k=(i+nextprime(i+1))/2; if(ispower(k), print1(i, ", "))))
CROSSREFS
Supersequence of A225195 and A242382.
Cf. A091624.
KEYWORD
nonn
AUTHOR
Antonio Roldán, May 12 2014
STATUS
approved
Smaller of the two consecutive primes whose sum is a triangular number.
+10
2
17, 37, 59, 103, 137, 149, 313, 467, 491, 883, 911, 1277, 1423, 1619, 1783, 2137, 2473, 2729, 4127, 4933, 5437, 5507, 6043, 6359, 10039, 10453, 11717, 13397, 15809, 17489, 20807, 21821, 23027, 27631, 28307, 28813, 29669, 33029, 36947, 39103, 44203, 48281
OFFSET
1,1
LINKS
FORMULA
a(n) + nextprime(a(n)) = A000217(A175132(n)).
MAPLE
f:= proc(n) local m, p, q;
m:= n*(n+1)/2;
p:= prevprime(ceil(m/2));
q:= nextprime(p);
if p+q=m then p fi
end proc:
map(f, [$3..500]); # Robert Israel, May 04 2020
MATHEMATICA
tri[n_] := IntegerQ[Sqrt[1 + 8 n]]; t = {}; p1 = 2; While[Length[t] < 50, p2 = NextPrime[p1]; If[tri[p1 + p2], AppendTo[t, p1]]; p1 = p2]; t (* T. D. Noe, May 28 2013 *)
CROSSREFS
Cf. A175132 (numbers n such that sum of two consecutive primes is triangular(n)).
Cf. A181902 and A154634 (average of two consecutive primes is a triangular number).
Cf. A075190 and A225195 (average of two consecutive primes is a square).
Cf. A074924 and A061275 (sum of two consecutive primes is a square).
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, May 28 2013
STATUS
approved
Lesser of consecutive primes whose average is a perfect cube.
+10
2
61, 1723, 4093, 17573, 21943, 46649, 110587, 195103, 287491, 314423, 405221, 474547, 1061189, 1191013, 1404919, 1601609, 1906621, 2000371, 2146687, 2196979, 3241783, 3511799, 4912991, 5268017, 6229501, 6751267, 6858997, 7077883, 11239421, 20346407, 21951997, 26198063
OFFSET
1,1
LINKS
EXAMPLE
1723 is in the sequence because it is prime, nextprime(1723) = 1733, and average(1723,1733) = 1728 = 12^3.
MATHEMATICA
Select[Partition[Prime[Range[2, 10^5]], 2, 1], IntegerQ[Surd[(First[#] + Last[#])/2, 3]] &][[;; , 1]] (* Amiram Eldar, Jul 04 2022 *)
PROG
(PARI) {for(i=3, 3*10^7, if(isprime(i), k=(i+nextprime(i+1))/2; if(ispower(k, 3), print1(i, ", "))))}
CROSSREFS
Subsequence of A077037 and A242380.
KEYWORD
nonn
AUTHOR
Antonio Roldán, May 12 2014
STATUS
approved
For n >= 1, a(n) is the least prime p such that the arithmetic mean of (n + 1) consecutive primes starting with p is a perfect square, or a(n) = -1 if no such p exists.
+10
0
3, 2393, 5, 827, 53, 271, 1063, 23993, 197, 29, 193, 2143, 359, 6829, 397, 17, 433, 661, 2837, 25171, 13597, 563, 10301, 1814233, 51427, 6781, 316817, 7477, 71, 238919, 11491, 3109, 42293, 38653, 6263, 13043, 474497, 21433, 13, 21419, 16963, 5119, 705209, 183761
OFFSET
1,1
COMMENTS
Does a(n) exists for all n >= 1 ?
From David A. Corneth, Oct 18 2023: (start)
Let s(n) be the sum of n + 1 consecutive primes starting with a(n). Then s(n)/(n+1) = m^2 for some positive integer m.
This means s(n) = (n + 1) * m^2. If n is even then m is odd if a(n) > 2.
As s(n) >= A007504(n) we have m^2 >= s(n)/(n+1) >= A007504(n)/(n+1) i.e. m >= sqrt(A007504(n)/(n+1)). So for some m we can see if m^2 * (n+1) is the sum of n+1 consecutive primes and if so a(n) is the smallest prime of these n+1 primes after testing all candidates up to m. (End)
From Ctibor O. Zizka, Oct 18 2023: (start)
s(n) = (n + 1)* a(n) + Sum_{i=0..(n-1)} (n-i)*g(i+1), thus we have Sum_{i=0..(n-1)} (n-i)*g(i+1) = (m^2 - a(n)) * (n + 1), g(j) are the n gaps between n + 1 consecutive primes. (End)
EXAMPLE
n = 2: we search for the least prime(i) such that (prime(i) + prime(i + 1) + prime(i + 2))/3 = m^2, m an integer. This is valid for (2393 + 2399 + 2411)/3 = 49^2 thus a(2) = 2393.
PROG
(PARI) isok(x) = (denominator(x)==1) && issquare(x);
a(n) = my(k=1); while (!isok((vecsum(primes(k+n))-vecsum(primes(k-1)))/(n+1)), k++); prime(k); \\ Michel Marcus, Oct 16 2023
(PARI) a(n) = {my(m = n + 1, ps = vector(m, i, prime(i)), s); forprime(p = ps[m] + 1, , s = vecsum(ps); if(!(s % m) && issquare(s/m), return(ps[1])); ps = concat(vecextract(ps, "^1"), p)); } \\ Amiram Eldar, Oct 18 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Oct 15 2023
EXTENSIONS
More terms from Amiram Eldar, Oct 18 2023
STATUS
approved

Search completed in 0.006 seconds