[go: up one dir, main page]

login
Search: a222112 -id:a222112
     Sort: relevance | references | number | modified | created      Format: long | short | data
Goodstein numbers: a(n) = G_n(n), where G is the Goodstein function.
+10
34
0, 0, 1, 2, 83, 1197, 187243, 37665879, 20000000211, 855935016215, 44580503598539, 2120126221988686, 155568095557812625, 6568408355712901455, 295147905179358418247, 14063084452070776884879
OFFSET
0,4
COMMENTS
To write an integer n in base-k hereditary representation, write n in ordinary base-k representation, and then do the same recursively for all exponents which are greater than k.
For example, the hereditary representation of 132132 in base-2 is:
132132 = 2^17 + 2^10 + 2^5 + 2^2
= 2^(2^4 + 1) + 2^(2^3 + 2) + 2^(2^2 + 1) + 2^2
= 2^(2^(2^2) + 1) + 2^(2^(2+1) + 2) + 2^(2^2 + 1) + 2^2.
Define B_k(n) to be the function that substitutes k+1 for all the bases of the base-k hereditary representation of n.
E.g., B_2(101) = B_2(2^(2^2 + 2) + 2^(2^2 + 1) + 2^2 + 1) = 3^(3^3 + 3) + 3^(3^3 + 1) + 3^3 + 1 = 228767924549638.
(Sometimes B_k(n) is referred to as n "bumped" from base k.)
The Goodstein function is defined as: G_k(n) = B_{k+1}(G_{k-1}(n)) - 1 with G_0(n) = n, i.e., iteration of bumping the number to the next larger base and subtracting one; see example section for instances.
Goodstein's theorem says that for any nonnegative n, the sequence G_k(n) eventually stabilizes and then decreases by 1 in each step until it reaches 0. (The subsequent values of G_k(n) < 0 are not part of the sequence.)
Named after the English mathematician Reuben Louis Goodstein (1912-1985). - Amiram Eldar, Jun 19 2021
LINKS
R. L. Goodstein, On the Restricted Ordinal Theorem, J. Symb. Logic, Vol. 9, No. 2 (1944), pp. 33-41; alternative link.
Eric Weisstein's World of Mathematics, Goodstein sequences.
EXAMPLE
Compute a(5) = G_5(5):
G_0(5) = 5;
G_1(5) = B_2(G_0(5))-1 = B_2(2^2+1)-1 = (3^3+1)-1 = 27 = 3^3;
G_2(5) = B_3(G_1(5))-1 = B_3(3^3)-1 = 4^4-1 = 255 = 3*4^3+3*4^2+3*4+3;
G_3(5) = B_4(G_2(5))-1 = B_4(3*4^3+3*4^2+3*4+3)-1 = 467;
G_4(5) = B_5(G_3(5))-1 = B_5(3*5^3+3*5^2+3*5+2)-1 = 775;
G_5(5) = B_6(G_4(5))-1 = B_6(3*6^3+3*6^2+3*6+1)-1 = 1197.
PROG
(PARI) (B(n, b)=sum(i=1, #n=digits(n, b), n[i]*(b+1)^if(#n<b+i, #n-i, B(#n-i, b)))); A266201(n)=for(k=1, n, n=B(n, k+1)-1); n \\ M. F. Hasler, Feb 12 2017
CROSSREFS
Cf. Goodstein sequences: A056004: G_1(n); A057650: G_2(n); A059934: G_3(n); A059935: G_4(n); A059936: G_5(n); A215409: G_n(3); A056193: G_n(4); A266204: G_n(5); A266205: G_n(6); A222117: G_n(15); A059933: G_n(16); A211378: G_n(19).
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A266202: g_n(n); A266203: a(n) = k such that g_k(n)=0;
Bumping Sequences: A222112: B_2(n);
Other sequences: A222113.
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, Jan 22 2016
EXTENSIONS
Edited by M. F. Hasler, Feb 12 2017
Incorrect a(16) deleted (the correct value is ~ 2.77*10^861) by M. F. Hasler, Feb 19 2017
STATUS
approved
Initial step in Goodstein sequences: write n in hereditary representation base 2, bump to base 3, then subtract 1.
+10
22
0, 2, 3, 26, 27, 29, 30, 80, 81, 83, 84, 107, 108, 110, 111, 7625597484986, 7625597484987, 7625597484989, 7625597484990, 7625597485013, 7625597485014, 7625597485016, 7625597485017, 7625597485067, 7625597485068, 7625597485070, 7625597485071, 7625597485094
OFFSET
1,2
COMMENTS
To write an integer n in base-k hereditary representation, write n in ordinary base-k representation, and then do the same recursively for all exponents which are greater than k: e.g., 2^18 = 2^(2^4 + 2) = 2^(2^(2^2) + 2). "Bump to base 3" means to replace all the 2's in that representation by 3. - M. F. Hasler, Feb 19 2017
LINKS
A. E. Caicedo, Goodstein's function, Revista Colombiana de Matemáticas 41 (2007), 381-391.
R. L. Goodstein, On the Restricted Ordinal Theorem, J. Symb. Logic 9, 33-41, 1944.
L. Kirby, and J. Paris, Accessible independence results for Peano arithmetic, Bull. London Mathematical Society, 14 (1982), 285-293.
Eric Weisstein's World of Mathematics, Hereditary Representation.
Eric Weisstein's World of Mathematics, Goodstein Sequence.
EXAMPLE
a(18)=7625597484989 since 18=2^(2^2)+2^1 which when bumped from 2 to 3 becomes 3^(3^3)+3^1=76255974849890 and when 1 is subtracted gives 7625597484989.
PROG
(Haskell) -- See Link
(PARI) A056004(n)=sum(i=1, #n=binary(n), if(n[i], 3^if(#n-i<2, #n-i, A056004(#n-i)+1)))-1 \\ See A266201 for more general code. - M. F. Hasler, Feb 19 2017
CROSSREFS
Using G_k to denote the k-th step, this is the first in the following list: A056004: G_1(n), A057650: G_2(n), A059934: G_3(n), A059935: G_4(n), A059936: G_5(n); A266201: G_n(n); A056041.
Cf. A215409: G_n(3), A056193: G_n(4), A266204: G_n(5), A266205: G_n(6), A222117: G_n(15), A059933: G_n(16), A211378: G_n(19).
See A222112 for an alternate version.
KEYWORD
nonn
AUTHOR
Henry Bottomley, Aug 04 2000
EXTENSIONS
Edited by M. F. Hasler, Feb 19 2017
STATUS
approved
Weak Goodstein sequence beginning with 266.
+10
12
266, 6590, 65601, 390750, 1679831, 5765085, 16777579, 43047173, 100000551, 214359541, 429982475, 815731628, 1475790101, 2562891818, 4294968647, 6975758960, 11019962273, 16983564926, 25600002083, 37822861652, 54875876045, 78310988018, 110075317151, 152587893847
OFFSET
0,1
LINKS
Antoine Nectoux, Goodstein Sequences: The Power of a Detour via Infinity, Klein Project Blog, 2015.
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 09 2015, following a suggestion from Alexander R. Povolotsky
EXTENSIONS
More terms from Chai Wah Wu, Dec 09 2015
STATUS
approved
Goodstein sequence starting with a(1) = 16: to calculate a(n) for n>1, subtract 1 from a(n-1) and write the result in the hereditary representation base n, then bump the base to n+1.
+10
4
16, 112, 1284, 18753, 326594, 6588345, 150994944, 3524450281, 100077777776, 3138578427935, 106993479003784, 3937376861542205, 155568096352467864, 6568408356994335931, 295147905181357143920, 14063084452070776884880, 708235345355342213988446
OFFSET
1,1
COMMENTS
Compare to A222117: the underlying variants to define Goodstein sequences are equivalent.
REFERENCES
Helmut Schwichtenberg and Stanley S. Wainer, Proofs and Computations, Cambridge University Press, 2012; 4.4.1, page 148ff.
LINKS
R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic, Vol. 9, No. 2, Jun., 1944.
EXAMPLE
a(1) - 1 = 15 = 2^3 + 2^2 + 2^1 + 2^0 = 2^(2^1+1) + 2^2 + 2^1 + 2^0
-> a(2) = 3^(3^1+1) + 3^3 + 3^1 + 3^0 = 112;
a(2) - 1 = 111 = 3^(3^1+1) + 3^3 + 3^1
-> a(3) = 4^(4^1+1) + 4^4 + 4^1 = 1284;
a(3) - 1 = 1283 = 4^(4^1+1) + 4^4 + 3*4^0
-> a(4) = 5^(5^1+1) + 5^5 + 3*5^0 = 18753;
a(4) - 1 = 18752 = 5^(5^1+1) + 5^5 + 2*5^0
-> a(5) = 6^(6^1+1) + 6^6 + 2*6^0 = 326594;
a(5) - 1 = 326593 = 6^(6^1+1) + 6^6 + 6^0
-> a(6) = 7^(7^1+1) + 7^7 + 7^0 = 6588345.
PROG
(Haskell) -- See Link
CROSSREFS
Cf. A222112.
KEYWORD
nonn,fini
AUTHOR
Reinhard Zumkeller, Feb 13 2013
STATUS
approved
T(n, k) is the result of replacing 2's by k's in the hereditary base-2 expansion of n; square array T(n, k) read by antidiagonals upwards, n, k >= 0.
+10
3
0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 2, 1, 3, 3, 1, 0, 1, 2, 4, 4, 4, 1, 0, 2, 2, 5, 27, 5, 5, 1, 0, 0, 3, 6, 28, 256, 6, 6, 1, 0, 1, 1, 7, 30, 257, 3125, 7, 7, 1, 0, 0, 2, 8, 31, 260, 3126, 46656, 8, 8, 1, 0, 1, 2, 9, 81, 261, 3130, 46657, 823543, 9, 9, 1, 0
OFFSET
0,12
FORMULA
T(n, n) = A343255(n).
T(n, 0) = A345021(n).
T(n, 1) = A000120(n).
T(n, 2) = n.
T(n, 3) = A222112(n-1).
T(0, k) = 0.
T(1, k) = 1.
T(2, k) = k.
T(3, k) = k + 1.
T(4, k) = k^k = A000312(k).
T(5, k) = k^k + 1 = A014566(k).
T(6, k) = k^k + k = A066068(k).
T(7, k) = k^k + k + 1 = A066279(k).
T(16, k) = k^k^k = A002488(k).
T(m + n, k) = T(m, k) + T(n, k) when m AND n = 0 (where AND denotes the bitwise AND operator).
EXAMPLE
Array T(n, k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9
---+-------------------------------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0
1| 1 1 1 1 1 1 1 1 1 1
2| 0 1 2 3 4 5 6 7 8 9
3| 1 2 3 4 5 6 7 8 9 10
4| 1 1 4 27 256 3125 46656 823543 16777216 387420489
5| 2 2 5 28 257 3126 46657 823544 16777217 387420490
6| 1 2 6 30 260 3130 46662 823550 16777224 387420498
7| 2 3 7 31 261 3131 46663 823551 16777225 387420499
8| 0 1 8 81 1024 15625 279936 5764801 134217728 3486784401
9| 1 2 9 82 1025 15626 279937 5764802 134217729 3486784402
10| 0 2 10 84 1028 15630 279942 5764808 134217736 3486784410
PROG
(PARI) T(n, k) = { my (v=0, e); while (n, n-=2^e=valuation(n, 2); v+=k^T(e, k)); v }
CROSSREFS
See A341907 for a similar sequence.
KEYWORD
nonn,tabl,base
AUTHOR
Rémy Sigrist, Jun 04 2021
STATUS
approved
Sum of coefficients in the hereditary representation of n in base 2.
+10
2
0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 4, 5, 6, 7, 7, 8, 9, 10, 8, 9, 10, 11, 11, 12, 13, 14, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 9, 10, 11, 12, 12, 13, 14, 15, 13, 14, 15, 16, 16, 17, 18, 19, 6, 7, 8, 9, 9, 10, 11, 12, 10, 11, 12, 13, 13, 14, 15, 16, 10, 11, 12, 13, 13, 14, 15, 16, 14, 15, 16, 17, 17, 18, 19, 20, 11, 12, 13, 14, 14
OFFSET
0,3
COMMENTS
The hereditary representation of a number n in base b is a [possibly empty] sum (possibly represented as a list) of monomials of the form m*b^e (possibly represented as a list [m,e] or as a single number m if e = 0) with coefficients 0 < m < b, and the (strictly increasing) exponents e > 0 recursively again expressed in the same form. Thus 0 = [], 1 = 1*b^0 = [1], b = 1*b^1 = [[1, [1]]] etc.
LINKS
Eric Weisstein's World of Mathematics, Hereditary Representation.
FORMULA
If n = Sum_{j=1..k} 2^e_j where 0 <= e_1 < ... < e_k, then a(n) = k + Sum_{j=1..k} a(e_j). - Pontus von Brömssen, Sep 17 2020
EXAMPLE
266 = 1*2^1 + 1*2^(1+1*2^1) + 1*2^(1*2^(1+1*2^1)) which can be represented as [[1, [1]], [1, [1, [1, [1]]]], [1, [[1, [1, [1, [1]]]]]]], and there are 11 "1"s, therefore a(266) = 11.
MATHEMATICA
a[n_] := a[n] = Total[1 + a /@ Log2[DeleteCases[NumberExpand[n, 2], 0]]]; (* Vladimir Reshetnikov, Dec 21 2023 *)
PROG
(PARI) (hr(n, b=2)=if(1<#n=digits(n, b), my(v=if(n[#n], [n[#n]], [])); forstep(i=#n-1, 1, -1, n[i]&&v=concat(v, [[n[i], hr(#n-i, b)]])); v, n)); (cc(v)=if(type(v)=="t_VEC", sum(i=1, #v, cc(v[i])), v)); a(n)=cc(hr(n))
(Python)
def A273004(n):
s=format(n, 'b')[::-1]
return sum(1+A273004(i) for i in range(len(s)) if s[i]=='1') # Pontus von Brömssen, Sep 17 2020
CROSSREFS
Cf. A056004, A222112, A273005 (base 10 analog).
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, May 12 2016
STATUS
approved
Sum of coefficients in the hereditary representation of n in base 10.
+10
2
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 3
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Hereditary Representation.
FORMULA
If n = Sum_{j=1..k} d_j*10^(e_j) where 0 <= e_1 < ... < e_k and 1 <= d_j <= 9, then a(n) = Sum_{j=1..k} (d_j + a(e_j)). - Pontus von Brömssen, Sep 17 2020
EXAMPLE
266 = 6 + 6*10^1 + 2*10^2 which can be represented as [6, [6, [1]], [2, [2]]], therefore a(266) = 6 + 6 + 1 + 2 + 2 = 17.
PROG
(PARI) (hr(n, b=10)=if(1<#n=digits(n, b), my(v=if(n[#n], [n[#n]], [])); forstep(i=#n-1, 1, -1, n[i]&&v=concat(v, [[n[i], hr(#n-i, b)]])); v, n)); (cc(v)=if(type(v)=="t_VEC", sum(i=1, #v, cc(v[i])), v)); a(n)=cc(hr(n, 10))
(Python)
def A273005(n):
s=str(n)[::-1]
return sum(int(s[i])+A273005(i) for i in range(len(s)) if s[i]!='0') # Pontus von Brömssen, Sep 17 2020
CROSSREFS
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, May 12 2016
STATUS
approved

Search completed in 0.008 seconds