[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a221918 -id:a221918
Displaying 1-8 of 8 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A060294 Decimal expansion of Buffon's constant 2/Pi. +10
56
6, 3, 6, 6, 1, 9, 7, 7, 2, 3, 6, 7, 5, 8, 1, 3, 4, 3, 0, 7, 5, 5, 3, 5, 0, 5, 3, 4, 9, 0, 0, 5, 7, 4, 4, 8, 1, 3, 7, 8, 3, 8, 5, 8, 2, 9, 6, 1, 8, 2, 5, 7, 9, 4, 9, 9, 0, 6, 6, 9, 3, 7, 6, 2, 3, 5, 5, 8, 7, 1, 9, 0, 5, 3, 6, 9, 0, 6, 1, 4, 0, 3, 6, 0, 4, 5, 5, 2, 1, 1, 0, 6, 5, 0, 1, 2, 3, 4, 3, 8, 2, 4, 2, 9, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The probability P(l,d) that a needle of length l will land on a line, given a floor with equally spaced parallel lines at a distance d (>=l) apart, is (2/Pi)*(l/d). - Benoit Cloitre, Oct 14 2002
Lim_{n->infinity} z(n)/log(n) = 2/Pi, where z(n) is the expected number of real zeros of a random polynomial of degree n with real coefficients chosen from a standard Gaussian distribution (cf. Finch reference). - Benoit Cloitre, Nov 02 2003
Also the ratio of the average chord length when two points are chosen at random on a circle of radius r to the maximum possible chord length (i.e., diameter) = A088538*r / (2*r) = 2/Pi. Is there a (direct or obvious) relationship between this fact and that 2/Pi is the "magic geometric constant" for a circle (see MathWorld link)? - Rick L. Shepherd, Jun 22 2006
Blatner (1997) says that Euler found a "fascinating infinite product" for Pi involving the prime numbers, but the number he then describes does not match Pi. Switching the numerator and the denominator results in this number. - Alonso del Arte, May 16 2012
2/Pi is also the height (the ordinate y) of the geometric centroid of each arbelos (see the references and links given under A221918) with a large radius r=1 and any small ones r1 and r2 = 1 - r1, for 0 < r1 < 1. Use the integral formula given, e.g., in the MathWorld or Wikipedia centroid reference, for the two parts of the arbelos (dissected by the vertical line x = 2*r1), and then use the decomposition formula. The heights y1 and y2 of the centroids of the two parts satisfy: F1(r1)*y1(r1) = 2*r1^2*(1-r1) and F2(1-r1)*y2(1-r1) = 2*(1-r1)^2*r1. The r1 dependent area F = F1 + F2 is Pi*r1*(1-r1). (F1 and F2 are rather complicated but their explicit formulas are not needed here.) The r1 dependent horizontal coordinate x with origin at the left tip of the arbelos is x = r1 + 1/2. - Wolfdieter Lang, Feb 28 2013
Construct a quadrilateral of maximal area inside a circle. The quadrilateral is necessarily an inscribed square (with diagonals that are diameters). 2/Pi is the ratio of the square's area to the circle's area. - Rick L. Shepherd, Aug 02 2014
The expected number of real roots of a real polynomial of degree n varies as this constant times the (natural) logarithm of n, see Kac, when its coefficients are chosen from the standard uniform distribution. This may be related to Rick Shepherd's comment. - Charles R Greathouse IV, Oct 06 2014
2/Pi is also the minimum value, at x = 1/2, on (0,1) of 1/(Pi*sqrt(x*(1-x))), the nonzero piece of the probability density function for the standard arcsine distribution. - Rick L. Shepherd, Dec 05 2016
The average distance from the center of a unit-radius circle to the midpoints of chords drawn between two points that are uniformly and independently chosen at random on the circumference of the circle. - Amiram Eldar, Sep 08 2020
2/Pi <= sin(x)/x < 1 for 0 < |x| <= Pi/2 is Jordan's inequality, also known as (2/Pi) * x <= sin(x) <= x for 0 <= x <= Pi/2; this inequality was named after the French mathematician Camille Jordan (1838-1922). - Bernard Schott, Jan 07 2023
This constant 2/Pi was named after the needle experiment, described in 1777 by the French naturalist and mathematician Georges-Louis Leclerc, Comte de Buffon (1707-1788). Note that the parrot Buffon's macaw and the antelope Buffon's kob were named also after Buffon. - Bernard Schott, Jan 10 2023
REFERENCES
David Blatner, The Joy of Pi. New York: Walker & Company (1997): 119, circle by upper right corner.
G. Buffon, Essai d'arithmétique morale. Supplément à l'Histoire Naturelle, Vol. 4, 1777.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 141
Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 196.
G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, p. 7, eq. (1.2) and p. 105 eq. (7.4.2) with s=1/2.
Robert Kanigel, The Man Who Knew Infinity: A Life of the Genius Ramanujan, 1991.
Daniel A. Klain and Gian-Carlo Rota, Introduction to Geometric Probability, Cambridge, 1997, see Chap. 1.
Luis A. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley, 1976.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 53.
Robert M. Young, Excursions in Calculus, An Interplay of the Continuous and the Discrete. Dolciani Mathematical Expositions Number 13. MAA.
LINKS
G. Buffon, Essai d'arithmétique morale, Supplément à l'Histoire Naturelle, Vol. 4, 1777.
Encyclopedia of Mathematics, Arcsine distribution
Boris Gourevitch, L'univers de Pi
Mark Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49:4 (1943), pp. 314-320.
MacTutor History of Mathematics archive, Georges-Louis Leclerc, Comte de Buffon.
Veikko Nevanlinna, On constants connected with the prime number theorem for arithmetic progressions, Annales Academiae Scientiarum Fennicae Ser. A. I., No. 539 (1973).
Da-Wei Niu, Jian Cao, and Feng Qi, Generalizations of Jordan's inequality and concerned relations, U.P.B. Sci. Bull., Series A, Vol. 72, Iss. 3, 2010
Herbert Solomon, Geometric Probability, SIAM, 1978, p. 152. [See average chord length comment]
Eric Weisstein's World of Mathematics, Buffon's needle problem.
Eric Weisstein's World of Mathematics, Magic Geometric Constants.
Eric Weisstein's World of Mathematics, Prime Products.
Eric Weisstein's World of Mathematics, Geometric Centroid.
Eric Weisstein's World of Mathematics, Jordan's Inequality.
Wikipedia, Centroid.
FORMULA
2/Pi = 1 - 5*(1/2)^3 + 9*((1*3)/(2*4))^3 - 13*((1*3*5)/(2*4*6))^3 ... - Jason Earls [formula corrected by Paul D. Hanna, Mar 23 2013]
The preceding formula is 2/Pi = Sum_{n>=0} (-1)^n * (4*n+1) * Product_{k=1..n} (2*k-1)^3/(2*k)^3. - Alexander R. Povolotsky, Mar 24 2013. [See the Hardy reference. - Wolfdieter Lang, Nov 13 2016]
2/Pi = Product_{n>=2} (p(n) + 2 - (p(n) mod 4))/p(n), where p(n) is the n-th prime. - Alonso del Arte, May 16 2012
2/Pi = Sum_{k>=0} ((2*k)!/(k!)^2)^3*((42*k+5)/(2^{12*k+3})) (due to Ramanujan). - L. Edson Jeffery, Mar 23 2013
Equals sinc(Pi/2). - Peter Luschny, Oct 04 2019
From A.H.M. Smeets, Apr 11 2020: (Start)
Equals Product_{i > 0} cos(Pi/2^(i+1)).
Equals Product_{i > 0} f_i(2)/2, where f_0(2) = 0, f_(i+1)(2) = sqrt(2+f_i(2)) for i >= 0; a formula by François Viète (16th century).
Note that cos(Pi/2^(i+1)) = f_i(2)/2, i >= 0. (End)
Equals lim_{n->infinity} (1/n) * Sum_{k=1..n} abs(sin(k * m)) for all nonzero integers m (conjectured). Works with cos also. - Dimitri Papadopoulos, Jul 17 2020
From Amiram Eldar, Sep 08 2020: (Start)
Equals Product_{k>=1} (1 - 1/(2*k)^2).
Equals lim_{k->oo} (2*k+1)*binomial(2*k,k)^2/2^(4*k).
Equals Sum_{k>=0} binomial(2*k,k)^2/((2*k+2)*2^(4*k)). (End)
Equals Sum_{k>=0} mu(4*k+1)/(4*k+1) (Nevanlinna, 1973). - Amiram Eldar, Dec 21 2020
2/Pi = 1 - Sum_{n >= 1} (1/16^n) * binomial(2*n, n)^2 * 1/(2*n - 1). See Young, p. 264. - Peter Bala, Feb 17 2024
EXAMPLE
2/Pi = 0.6366197723675813430755350534900574481378385829618257949906...
MAPLE
Digits:=100: evalf(2/Pi); # Wesley Ivan Hurt, Aug 02 2014
MATHEMATICA
RealDigits[ N[ 2/Pi, 111]][[1]]
PROG
(PARI) default(realprecision, 20080); x=20/Pi; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b060294.txt", n, " ", d)); \\ Harry J. Smith, Jul 03 2009
(Magma) R:= RealField(100); 2/Pi(R); // G. C. Greubel, Mar 09 2018
CROSSREFS
Cf. A000796 (Pi), A088538, A154956, A082542 (numerators in an infinite product), A053300 (continued fraction without the initial 0).
Cf. A076668 (sqrt(2/Pi)).
KEYWORD
cons,nonn,changed
AUTHOR
Jason Earls, Mar 28 2001
STATUS
approved
A227041 Triangle of numerators of harmonic mean of n and m, 1 <= m <= n. +10
7
1, 4, 2, 3, 12, 3, 8, 8, 24, 4, 5, 20, 15, 40, 5, 12, 3, 4, 24, 60, 6, 7, 28, 21, 56, 35, 84, 7, 16, 16, 48, 16, 80, 48, 112, 8, 9, 36, 9, 72, 45, 36, 63, 144, 9, 20, 10, 60, 40, 20, 15, 140, 80, 180, 10, 11, 44, 33, 88, 55, 132, 77, 176, 99, 220, 11 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The harmonic mean H(n,m) is the reciprocal of the arithmetic mean of the reciprocals of n and m: H(n,m) = 1/((1/2)*(1/n +1/m)) = 2*n*m/(n+m). 1/H(n,m) marks the middle of the interval [1/n, 1/m] if m < n: 1/H(n,m) = 1/n + (1/2)*(1/m - 1/n). For m < n one has m < H(n,m) < n, and H(n,n) = n.
H(n,m) = H(m,n).
For the rationals H(n,m)/2 see A221918(n,m)/A221919(n,m). See the comments under A221918.
LINKS
Eric Weisstein's World of Mathematics, Harmonic Mean.
FORMULA
a(n,m) = numerator(2*n*m/(n+m)), 1 <= m <= n.
a(n,m) = 2*n*m/gcd(n+m,2*n*m) = 2*n*m/gcd(n+m,2*m^2), n >= 0.
EXAMPLE
The triangle of numerators of H(n,m), called a(n,m) begins:
n\m 1 2 3 4 5 6 7 8 9 10 11 ...
1: 1
2: 4 2
3: 3 12 3
4: 8 8 24 4
5: 5 20 15 40 5
6: 12 3 4 24 60 6
7: 7 28 21 56 35 84 7
8: 16 16 48 16 80 48 112 8
9: 9 36 9 72 45 36 63 144 9
10: 20 10 60 40 20 15 140 80 180 10
11: 11 44 33 88 55 132 77 176 99 220 11
...
a(4,3) = numerator(24/7) = 24 = 24/gcd(7,18).
The triangle of the rationals H(n,m) begins:
n\m 1 2 3 4 5 6 7 8 9
1: 1/1
2: 4/3 2/1
3: 3/2 12/5 3/1
4: 8/5 8/3 24/7 4/1
5: 5/3 20/7 15/4 40/9 5/1
6: 12/7 3/1 4/1 24/5 60/11 6/1
7: 7/4 28/9 21/5 56/11 35/6 84/13 7/1
8: 16/9 16/5 48/11 16/3 80/13 48/7 112/15 8/1
9: 9/5 36/11 9/2 72/13 45/7 36/5 63/8 144/17 9/1
...
H(4,3) = 2*4*3/(4 + 3) = 2*4*3/7 = 24/7.
CROSSREFS
Cf. A227042, A022998 (m=1), A227043 (m=2), A227106 (m=3), A227107 (m=4), A221918/A221919.
KEYWORD
nonn,easy,frac,tabl
AUTHOR
Wolfdieter Lang, Jul 01 2013
STATUS
approved
A227042 Triangle of denominators of harmonic mean of n and m, 1 <= m <= n. +10
7
1, 3, 1, 2, 5, 1, 5, 3, 7, 1, 3, 7, 4, 9, 1, 7, 1, 1, 5, 11, 1, 4, 9, 5, 11, 6, 13, 1, 9, 5, 11, 3, 13, 7, 15, 1, 5, 11, 2, 13, 7, 5, 8, 17, 1, 11, 3, 13, 7, 3, 2, 17, 9, 19, 1, 6, 13, 7, 15, 8, 17, 9, 19, 10, 21, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
See the comments under A227041. a(n,m) gives the denominator of H(n,m) = 2*n*m/(n+m) in lowest terms.
LINKS
Eric Weisstein's World of Mathematics, Harmonic Mean.
FORMULA
a(n,m) = denominator(2*n*m/(n+m)), 1 <= m <= n.
a(n,m) = (n+m)/gcd(2*n*m, n+m) = (n+m)/gcd(n+m, 2*m^2), 1 <= m <= n.
EXAMPLE
The triangle of denominators of H(n,m), called a(n,m) begins:
n\m 1 2 3 4 5 6 7 8 9 10 11 ...
1: 1
2: 3 1
3: 2 5 1
4: 5 3 7 1
5: 3 7 4 9 1
6: 7 1 1 5 11 1
7: 4 9 5 11 6 13 1
8; 9 5 11 3 13 7 15 1
9: 5 11 2 13 7 5 8 17 1
10: 11 3 13 7 3 2 17 9 19 1
11: 6 13 7 15 8 17 9 19 10 21 1
...
For the triangle of the rationals H(n,m) see the example section of A227041.
H(4,2) = denominator(16/6) = denominator(8/3) = 3 = 6/gcd(6,8) = 6/2.
CROSSREFS
Cf. A227041, A026741 (column m=1), A000265 (m=2), A106619 (m=3), A227140(n+8) (m=4), A227108 (m=5), A221918/A221919.
KEYWORD
nonn,easy,frac,tabl
AUTHOR
Wolfdieter Lang, Jul 01 2013
STATUS
approved
A221919 Triangle of numerators of sum of two unit fractions: 1/n + 1/m, n >= m >= 1. +10
4
2, 3, 1, 4, 5, 2, 5, 3, 7, 1, 6, 7, 8, 9, 2, 7, 2, 1, 5, 11, 1, 8, 9, 10, 11, 12, 13, 2, 9, 5, 11, 3, 13, 7, 15, 1, 10, 11, 4, 13, 14, 5, 16, 17, 2, 11, 3, 13, 7, 3, 4, 17, 9, 19, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 2, 13, 7, 5, 1, 17, 1, 19, 5, 7, 11, 23, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The triangle of the corresponding denominators is given in A221918.
See A221918 for comments on resistance, reduced mass and radius of the twin circles in Archimedes's arbelos, as well as references.
The column sequences give A000027(n+1), A060819(n+2), A106610(n+3), A106617(n+4), A132739(n+5), A222464 for n >= m = 1,2,..., 6.
LINKS
FORMULA
a(n,m) = numerator(2/n + 1/m), n >= m >= 1, and 0 otherwise.
A221918(n,m)/a(n,m) = R(n,m) = n*m/(n+m). 1/R(n,m) = 1/n + 1/m.
EXAMPLE
The triangle a(n,m) begins:
n\m 1 2 3 4 5 6 7 8 9 10 11 12 ...
1: 2
2: 3 1
3: 4 5 2
4: 5 3 7 1
5: 6 7 8 9 2
6: 7 2 1 5 11 1
7: 8 9 10 11 12 13 2
8: 9 5 11 3 13 7 15 1
9: 10 11 4 13 14 5 16 17
10: 11 3 13 7 3 4 17 9 19 1
11: 12 13 14 15 16 17 18 15 20 21 2
12: 13 7 5 1 17 1 19 5 7 11 23 1
...
a(n,1) = n + 1 because R(n,1) = n/(n+1), gcd(n,n+1) = 1, hence denominator(R(n,m)) = n + 1.
a(5,4) = 9 because R(5,4) = 20/9, gcd(20,9) = 1, hence denominator( R(5,4)) = 9.
a(6,3) = 1 because R(6,3) = 18/9 = 2/1.
For the rationals R(n,m) see A221918.
MATHEMATICA
a[n_, m_] := Numerator[1/n + 1/m]; Table[a[n, m], {n, 1, 12}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 25 2013 *)
CROSSREFS
Cf. A221918 (companion triangle).
KEYWORD
nonn,easy,tabl,frac
AUTHOR
Wolfdieter Lang, Feb 21 2013
STATUS
approved
A221920 a(n) = 3*n/gcd(3*n, n+3), n >= 3. +10
3
3, 12, 15, 2, 21, 24, 9, 30, 33, 12, 39, 42, 5, 48, 51, 18, 57, 60, 21, 66, 69, 8, 75, 78, 27, 84, 87, 30, 93, 96, 11, 102, 105, 36, 111, 114, 39, 120, 123, 14, 129, 132, 45, 138, 141, 48, 147, 150, 17, 156, 159, 54, 165, 168, 57, 174, 177, 20, 183, 186, 63 (list; graph; refs; listen; history; text; internal format)
OFFSET
3,1
COMMENTS
This is the third column sequence (m = 3) of the triangle A221918.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-1).
FORMULA
a(n) = A221918(n,3) = numerator(n*3/(n+3)), n >= 3.
a(n) = 3*n/gcd(3*n,n+3), n >= 3.
a(n) = 3*n/gcd(9,n+3), n >= 3, (because gcd(n+3,3*n) = gcd(n+3,3*n - 3*(n+3)) = gcd(n+3,-3^2) = gcd(n+3,9)).
G.f.: -x^3*(6*x^17 + 3*x^16 - 3*x^14 - 6*x^13 - x^12 - 12*x^11 - 15*x^10 - 6*x^9 - 33*x^8 - 30*x^7 - 9*x^6 - 24*x^5 - 21*x^4 - 2*x^3 - 15*x^2 - 12*x - 3) / ((x-1)^2*(x^2 + x + 1)^2*(x^6 + x^3 + 1)^2). - Colin Barker, Feb 25 2013
Sum_{k=3..n} a(k) ~ (61/54) * n^2. - Amiram Eldar, Oct 09 2023
EXAMPLE
a(6) = numerator(18/9) = numerator(2) = 2 = 18/gcd(18,9) = 18/9 = 18/gcd(9,9) = 18/9.
MATHEMATICA
a[n_] := 3*n/GCD[3*n, n+3]; Array[a, 63, 3] (* Amiram Eldar, Oct 09 2023 *)
PROG
(PARI) a(n)=3*n/gcd(3*n, n+3) \\ Charles R Greathouse IV, Apr 18 2013
CROSSREFS
Cf. A221918, A000027 (m=1), A145979(m=2), A221921 (m=4), A222463 (m=5).
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 21 2013
STATUS
approved
A221921 a(n) = 4*n/gcd(4*n,n+4), n >= 4. +10
3
2, 20, 12, 28, 8, 36, 20, 44, 3, 52, 28, 60, 16, 68, 36, 76, 10, 84, 44, 92, 24, 100, 52, 108, 7, 116, 60, 124, 32, 132, 68, 140, 18, 148, 76, 156, 40, 164, 84, 172, 11, 180, 92, 188, 48, 196, 100, 204, 26, 212, 108, 220, 56, 228, 116, 236, 15, 244, 124, 252, 64 (list; graph; refs; listen; history; text; internal format)
OFFSET
4,1
COMMENTS
This is the fourth column of the triangle A221918.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1).
FORMULA
a(n) = A221918(n,4) = numerator(n*4/(n+4)), n >= 4.
a(n) = 4*n/gcd(16,n+4), n >= 4.
G.f.: x^4*(-12*x^31 - 4*x^30 - 4*x^29 + 4*x^27 + 4*x^26 + 12*x^25 + x^24 + 20*x^23 + 12*x^22 + 28*x^21 + 8*x^20 + 36*x^19 + 20*x^18 + 44*x^17 + 6*x^16 + 76*x^15 + 36*x^14 + 68*x^13 + 16*x^12 + 60*x^11 + 28*x^10 + 52*x^9 + 3*x^8 + 44*x^7 + 20*x^6 + 36*x^5 + 8*x^4 + 28*x^3 + 12*x^2 + 20*x + 2) / (x^32 - 2*x^16 + 1). - Colin Barker, Feb 25 2013
Sum_{k=4..n} a(k) ~ (171/128) * n^2. - Amiram Eldar, Oct 09 2023
EXAMPLE
a(8) = numerator(32/12) = numerator(8/3) = 8 = 32/gcd(32,12) = 32/4 = 32/gcd(16,12).
MATHEMATICA
Table[(4n)/GCD[4n, n+4], {n, 4, 70}] (* Harvey P. Dale, May 15 2018 *)
PROG
(PARI) a(n)=4*n/gcd(4*n, n+4) \\ Charles R Greathouse IV, Apr 18 2013
CROSSREFS
Cf. A221918, A000027 (m=1), A145979(m=2), A221920 (m=3).
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 21 2013
STATUS
approved
A222463 a(n) = n*5/gcd(n*5,n+5), n >= 5. +10
2
5, 30, 35, 40, 45, 10, 55, 60, 65, 70, 15, 80, 85, 90, 95, 4, 105, 110, 115, 120, 25, 130, 135, 140, 145, 30, 155, 160, 165, 170, 35, 180, 185, 190, 195, 40, 205, 210, 215, 220, 9, 230, 235, 240, 245, 50, 255, 260, 265, 270, 55, 280, 285, 290, 295, 60 (list; graph; refs; listen; history; text; internal format)
OFFSET
5,1
COMMENTS
This is the fifth column (m=5) of the triangle A221918.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1).
FORMULA
a(n) = A221918(n,5) = numerator(n*5/(n+5)) = n*5/gcd(n*5,n+5) = n*5/gcd(25,n+5), n >= 5.
a(n) = 2*a(n-25)-a(n-50). - Colin Barker, Feb 25 2013
Sum_{k=5..n} a(k) ~ (521/250) * n^2. - Amiram Eldar, Oct 09 2023
EXAMPLE
a(10) = numerator(50/15) = numerator(10/3) = 10 = 50/gcd(50,15)= 50/5 = 50/gcd(25,15).
MATHEMATICA
Table[(5n)/GCD[5n, n +5], {n, 5, 60}] (* Harvey P. Dale, Nov 06 2020 *)
CROSSREFS
Cf. A221918, A000027 (m=1), A145979(m=2), A221920 (m=3), A221921 (m=4).
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 21 2013
STATUS
approved
A338797 Triangle read by rows: T(n,k) is the least m such that there exist positive integers x, y and z satisfying x/n + y/k = z/m where all fractions are reduced; 1 <= k <= n. +10
1
1, 2, 1, 3, 6, 1, 4, 4, 12, 1, 5, 10, 15, 20, 1, 6, 3, 2, 12, 30, 1, 7, 14, 21, 28, 35, 42, 1, 8, 8, 24, 8, 40, 24, 56, 1, 9, 18, 9, 36, 45, 18, 63, 72, 1, 10, 5, 30, 20, 2, 15, 70, 40, 90, 1, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
Peter Kagey, Table of n, a(n) for n = 1..10011 (first 141 rows, flattened)
FORMULA
A051537(n,k) <= T(n,k) <= A221918(n,k) <= lcm(n,k) = A051173(n,k).
T(n,k) = lcm(n,k) when gcd(n,k) = 1.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11 12
---+-----------------------------------------------
1 | 1,
2 | 2, 1,
3 | 3, 6, 1,
4 | 4, 4, 12, 1,
5 | 5, 10, 15, 20, 1,
6 | 6, 3, 2, 12, 30, 1,
7 | 7, 14, 21, 28, 35, 42, 1,
8 | 8, 8, 24, 8, 40, 24, 56, 1,
9 | 9, 18, 9, 36, 45, 18, 63, 72, 1,
10 | 10, 5, 30, 20, 2, 15, 70, 40, 90, 1,
11 | 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 1,
12 | 12, 12, 4, 3, 60, 4, 84, 24, 36, 60, 132, 1.
T(20,10) = 4 because 1/20 + 7/10 = 3/4, and there is no choice of numerators on the left that results in a smaller denominator on the right.
PROG
(Haskell)
import Data.Ratio ((%), denominator)
farey n = [k % n | k <- [1..n], gcd n k == 1]
a338797T n k = minimum [denominator $ a + b | a <- farey n, b <- farey k]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Nov 09 2020
STATUS
approved
page 1

Search completed in 0.013 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 21:28 EDT 2024. Contains 375550 sequences. (Running on oeis4.)