[go: up one dir, main page]

login
Search: a216451 -id:a216451
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers which are simultaneously of the form x^2+y^2, x^2+2y^2, x^2+3y^2, x^2+7y^2, all with x>=0, y>=0.
+10
9
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 193, 196, 225, 256, 289, 324, 337, 361, 400, 441, 457, 484, 529, 576, 625, 673, 676, 729, 772, 784, 841, 900, 961, 1009, 1024, 1033, 1089, 1129, 1156, 1201, 1225, 1296, 1297, 1348, 1369, 1444, 1521, 1600, 1681, 1737, 1764, 1801, 1828, 1849, 1873, 1936, 2017
OFFSET
1,2
CROSSREFS
Union of A216451 and the squares (A000290).
KEYWORD
nonn
AUTHOR
V. Raman, Sep 07 2012
EXTENSIONS
Edited by N. J. A. Sloane, Sep 11 2012
STATUS
approved
Let S_k = {x^2+k*y^2: x,y positive integers}. How many out of S_1, S_2, S_3, S_7 does n belong to?
+10
7
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 0, 0, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 0, 2, 3, 1, 1, 1, 2, 0, 3, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 1, 0, 1, 2, 1, 1, 0, 2, 0, 1, 2, 1, 1, 3, 2, 0, 0, 1, 3, 3, 1, 1, 2, 1, 0, 2, 1, 1, 2, 1, 1, 1, 1, 0, 2, 2, 1, 1, 1, 1, 0, 0, 1, 3, 1, 2, 2, 1, 1, 1, 1, 0, 1, 2, 2, 3, 0, 1, 2, 3, 1, 0, 2, 2, 1, 0, 0
OFFSET
1,8
COMMENTS
"If a composite number C is of the form a^2 + kb^2 for some integers a & b, then every prime factor P (of C) raised to an odd power is of the form c^2 + kd^2, for some integers c & d."
This statement is only true for k = 1, 2, 3. For k = 7, with the exception of the prime factor 2, the statement mentioned above is true.
A number can be written as a^2 + b^2 if and only if it has no prime factor congruent to 3 (mod 4) raised to an odd power.
A number can be written as a^2 + 2b^2 if and only if it has no prime factor congruent to 5 (mod 8) or 7 (mod 8) raised to an odd power.
A number can be written as a^2 + 3b^2 if and only if it has no prime factor congruent to 2 (mod 3) raised to an odd power.
A number can be written as a^2 + 7b^2 if and only if it has no prime factor congruent to 3 (mod 7) or 5 (mod 7) or 6 (mod 7) raised to an odd power and the exponent of 2 is not 1.
FORMULA
a(n) = 0 for almost all n. - Charles R Greathouse IV, Sep 14 2012
PROG
(PARI) for(n=1, 100, sol=0; for(x=1, 100, if(issquare(n-x*x)&&n-x*x>0, sol++; break)); for(x=1, 100, if(issquare(n-2*x*x)&&n-2*x*x>0, sol++; break)); for(x=1, 100, if(issquare(n-3*x*x)&&n-3*x*x>0, sol++; break)); for(x=1, 100, if(issquare(n-7*x*x)&&n-7*x*x>0, sol++; break)); print1(sol", ")) /* V. Raman, Oct 16 2012 */
KEYWORD
nonn
AUTHOR
V. Raman, Sep 07 2012
EXTENSIONS
Edited by N. J. A. Sloane, Sep 11 2012
STATUS
approved
Let S_k = {x^2+k*y^2: x,y nonnegative integers}. How many out of S_1, S_2, S_3, S_7 does n belong to?
+10
7
4, 2, 2, 4, 1, 1, 2, 3, 4, 1, 2, 2, 2, 0, 0, 4, 2, 2, 2, 1, 1, 1, 1, 1, 4, 1, 2, 2, 2, 0, 1, 3, 1, 2, 0, 4, 3, 1, 1, 1, 2, 0, 3, 2, 1, 0, 0, 2, 4, 2, 1, 2, 2, 1, 0, 1, 2, 1, 1, 0, 2, 0, 2, 4, 1, 1, 3, 2, 0, 0, 1, 3, 3, 1, 2, 2, 1, 0, 2, 1, 4, 2, 1, 1, 1, 1, 0, 2, 2, 1, 1, 1, 1, 0, 0, 1, 3, 2, 2, 4, 1, 1, 1, 1, 0, 1, 2, 2, 3, 0, 1, 2, 3, 1, 0, 2, 2, 1, 0, 0
OFFSET
1,1
COMMENTS
"If a composite number C is of the form a^2 + kb^2 for some integers a & b, then every prime factor of C raised to an odd power is of the form c^2 + kd^2 for some integers c & d."
This statement is only true for k = 1, 2, 3.
For k = 7, with the exception of the prime factor 2, the statement mentioned above is true.
A number can be written as a^2 + b^2 if and only if it has no prime factor congruent to 3 (mod 4) raised to an odd power.
A number can be written as a^2 + 2b^2 if and only if it has no prime factor congruent to 5 (mod 8) or 7 (mod 8) raised to an odd power.
A number can be written as a^2 + 3b^2 if and only if it has no prime factor congruent to 2 (mod 3) raised to an odd power.
A number can be written as a^2 + 7b^2 if and only if it has no prime factor congruent to 3 (mod 7) or 5 (mod 7) or 6 (mod 7) raised to an odd power, and the exponent of 2 is not 1.
Comment from N. J. A. Sloane, Sep 14 2012: S_1, S_2, S_3, S_7 are the first four quadratic forms with class number 1. (See Cox, for example.)
REFERENCES
David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989. - From N. J. A. Sloane, Sep 14 2012
FORMULA
The fraction of terms with a(n)>0 goes to zero as n increases. - Charles R Greathouse IV, Sep 11 2012
PROG
(PARI) for(n=1, 100, sol=0; for(x=0, 100, if(issquare(n-x*x)&&n-x*x>=0, sol++; break)); for(x=0, 100, if(issquare(n-2*x*x)&&n-2*x*x>=0, sol++; break)); for(x=0, 100, if(issquare(n-3*x*x)&&n-3*x*x>=0, sol++; break)); for(x=0, 100, if(issquare(n-7*x*x)&&n-7*x*x>=0, sol++; break)); print1(sol", ")) /* V. Raman, Oct 16 2012 */
KEYWORD
nonn
AUTHOR
V. Raman, Sep 13 2012
EXTENSIONS
Edited by N. J. A. Sloane, Sep 14 2012
STATUS
approved
Numbers which can be written neither as a^2+b^2, nor as a^2+2*b^2, nor as a^2+3*b^2, nor as a^2+7*b^2, with a >= 0 and b >= 0.
+10
4
14, 15, 30, 35, 42, 46, 47, 55, 60, 62, 69, 70, 78, 87, 94, 95, 105, 110, 115, 119, 120, 126, 135, 138, 140, 141, 142, 143, 154, 155, 158, 159, 165, 167, 168, 174, 182, 186, 188, 190, 195, 206, 210, 213, 215, 220, 222, 230, 231, 235, 238, 240, 248, 254, 255, 266, 270, 276, 280, 282, 285, 286, 287, 295, 299
OFFSET
1,1
COMMENTS
If a composite number C, in case, can be written in the form C = a^2+k*b^2, for some integers a & b, then every prime factor P (for C) being raised to an odd power can be written in the form P = c^2+k*d^2, for some integers c & d.
This statement is only true for k = 1, 2, 3.
For k = 7, with the exception of the prime factor 2, the statement mentioned above is true.
CROSSREFS
KEYWORD
nonn
AUTHOR
V. Raman, Sep 13 2012
STATUS
approved
Numbers which can be written neither as a^2+b^2, nor as a^2+2*b^2, nor as a^2+3*b^2, nor as a^2+7*b^2, with a > 0 and b > 0.
+10
3
1, 14, 15, 30, 35, 42, 46, 47, 55, 60, 62, 69, 70, 78, 87, 94, 95, 105, 110, 115, 119, 120, 126, 135, 138, 140, 141, 142, 143, 154, 155, 158, 159, 165, 167, 168, 174, 182, 186, 188, 190, 195, 206, 210, 213, 215, 220, 222, 230, 231, 235, 238, 240, 248, 254, 255, 266, 270, 276, 280, 282, 285, 286, 287, 295, 299
OFFSET
1,2
COMMENTS
If a composite number C, in case, can be written in the form C = a^2+k*b^2, for some integers a & b, then every prime factor P (for C) being raised to an odd power can be written in the form P = c^2+k*d^2, for some integers c & d.
This statement is only true for k = 1, 2, 3.
For k = 7, with the exception of the prime factor 2, the statement mentioned above is true.
Essentially the same as A216679. - R. J. Mathar, Sep 16 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
V. Raman, Sep 13 2012
STATUS
approved
Perfect squares which can be written in all the four forms a^2+b^2, a^2+2*b^2, a^2+3*b^2 and a^2+7*b^2, with a > 0 and b > 0.
+10
3
3600, 4624, 12100, 12321, 14400, 18496, 20449, 24336, 26896, 30276, 32400, 37249, 41616, 46225, 48400, 49284, 51076, 57600, 73984, 75076, 81796, 85264, 90000, 97344, 101124, 106929, 107584, 108900, 110889, 112225, 113569, 115600, 121104, 126736, 129600, 139876, 144400, 148225, 148996, 150544, 165649, 166464, 176400, 184041, 184900, 193600, 197136
OFFSET
1,1
COMMENTS
If a composite number C, say, can be written in the form C = a^2+k*b^2, for some integers a & b, then every prime factor P (for C) being raised to an odd power can be written in the form P = c^2+k*d^2, for some integers c & d.
This statement is only true for k = 1, 2, 3.
For k = 7, with the exception of the prime factor 2, the statement mentioned above is true.
CROSSREFS
KEYWORD
nonn
AUTHOR
V. Raman, Sep 13 2012
STATUS
approved
Numbers whose squares can be written in all the four forms a^2 + b^2, a^2 + 2*b^2, a^2 + 3*b^2 and a^2 + 7*b^2, with a > 0 and b > 0.
+10
1
60, 68, 110, 111, 120, 136, 143, 156, 164, 174, 180, 193, 204, 215, 220, 222, 226, 240, 272, 274, 286, 292, 300, 312, 318, 327, 328, 330, 333, 335, 337, 340, 348, 356, 360, 374, 380, 385, 386, 388, 407, 408, 420, 429, 430, 440, 444, 452, 457, 466, 468, 476, 480, 492, 522, 540, 544, 548, 550, 551, 555, 559, 562, 572, 579, 584
OFFSET
1,1
COMMENTS
If a composite number C can be written in the form C = a^2 + k*b^2, for some integers a and b, then every prime factor P (for C) being raised to an odd power can be written in the form P = c^2 + k*d^2, for some integers c and d.
This statement is only true for k = 1, 2, 3.
For k = 7, with the exception of the prime factor 2, the statement mentioned above is true.
LINKS
MAPLE
filter:= proc(n) local L, x, y;
select(t -> subs(t, x*y) > 0, [isolve(n^2=x^2+y^2)]) <> []
and select(t -> subs(t, x*y) > 0, [isolve(n^2=x^2+2*y^2)]) <> []
and select(t -> subs(t, x*y) > 0, [isolve(n^2=x^2+3*y^2)]) <> []
and select(t -> subs(t, x*y) > 0, [isolve(n^2=x^2+7*y^2)]) <> []
end proc:
select(filter, [$1..1000]); # Robert Israel, May 03 2018
MATHEMATICA
okQ[n_] := Module[{x, y}, AllTrue[{1, 2, 3, 7}, Solve[x > 0 && y > 0 && n^2 == x^2 + #*y^2, {x, y}, Integers] =!= {}&]];
Select[Range[1000], okQ] (* Jean-François Alcover, May 23 2023 *)
KEYWORD
nonn
AUTHOR
V. Raman, Sep 17 2012
STATUS
approved
Perfect squares which can be written neither as a^2+b^2, nor as a^2+2*b^2, nor as a^2+3*b^2, nor as a^2+7*b^2, with a > 0 and b > 0.
+10
0
1, 2209, 27889, 96721, 146689, 229441, 253009, 418609, 516961, 703921, 786769, 966289, 1324801, 1495729, 1739761, 2211169, 2283121, 2430481, 3323329, 3411409, 4255969, 4879681, 5527201, 5755201, 7091569, 7219969, 8427409, 8994001, 9138529, 10029889, 10182481, 11282881, 11607649, 12439729, 13476241, 14922769, 15295921
OFFSET
1,2
COMMENTS
If a composite number C, in case, can be written in the form C = a^2+k*b^2, for some integers a & b, then every prime factor P (for C) being raised to an odd power can be written in the form P = c^2+k*d^2, for some integers c & d.
This statement is only true for k = 1, 2, 3.
For k = 7, with the exception of the prime factor 2, the statement mentioned above is true.
KEYWORD
nonn
AUTHOR
V. Raman, Sep 17 2012
STATUS
approved
Numbers whose squares can be written neither as a^2 + b^2, nor as a^2 + 2*b^2, nor as a^2 + 3*b^2, nor as a^2 + 7*b^2, with a > 0 and b > 0.
+10
0
1, 47, 167, 311, 383, 479, 503, 647, 719, 839, 887, 983, 1151, 1223, 1319, 1487, 1511, 1559, 1823, 1847, 2063, 2209, 2351, 2399, 2663, 2687, 2903, 2999, 3023, 3167, 3191, 3359, 3407, 3527, 3671, 3863, 3911, 4007, 4079, 4583, 4679, 4703, 4751, 4871, 4919, 5039, 5087, 5351, 5519, 5591, 5711, 5879, 5927
OFFSET
1,2
COMMENTS
If a composite number C can be written in the form C = a^2+k*b^2, for some integers a and b, then every prime factor P (for C) being raised to an odd power can be written in the form P = c^2+k*d^2, for some integers c and d.
This statement is only true for k = 1, 2, 3.
For k = 7, with the exception of the prime factor 2, the statement mentioned above is true.
KEYWORD
nonn
AUTHOR
V. Raman, Sep 17 2012
STATUS
approved

Search completed in 0.010 seconds