[go: up one dir, main page]

login
Search: a216403 -id:a216403
     Sort: relevance | references | number | modified | created      Format: long | short | data
A(n,k) is the n-th derivative of f_k at x=1, and f_k is the k-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways; square array A(n,k), n>=0, k>=1, read by antidiagonals.
+10
58
1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 4, 3, 0, 1, 1, 2, 12, 8, 0, 1, 1, 6, 9, 52, 10, 0, 1, 1, 4, 27, 32, 240, 54, 0, 1, 1, 2, 18, 156, 180, 1188, -42, 0, 1, 1, 2, 15, 100, 1110, 954, 6804, 944, 0, 1, 1, 8, 9, 80, 650, 8322, 6524, 38960, -5112, 0, 1, 1, 6, 48, 56, 590, 4908, 70098, 45016, 253296, 47160, 0
OFFSET
0,9
COMMENTS
A000081(m) distinct functions are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways. Some functions are representable in more than one way, the number of valid parenthesizations is A000108(m-1). The f_k are ordered, such that the number m of x's in f_k is a nondecreasing function of k. The exact ordering is defined by the algorithm below.
The list of functions f_1, f_2, ... begins:
| f_k : m : function (tree) : representation(s) : sequence |
+-----+---+------------------+--------------------------+----------+
| f_1 | 1 | x -> x | x | A019590 |
| f_2 | 2 | x -> x^x | x^x | A005727 |
| f_3 | 3 | x -> x^(x*x) | (x^x)^x | A215524 |
| f_4 | 3 | x -> x^(x^x) | x^(x^x) | A179230 |
| f_5 | 4 | x -> x^(x*x*x) | ((x^x)^x)^x | A215704 |
| f_6 | 4 | x -> x^(x^x*x) | (x^x)^(x^x), (x^(x^x))^x | A215522 |
| f_7 | 4 | x -> x^(x^(x*x)) | x^((x^x)^x) | A215705 |
| f_8 | 4 | x -> x^(x^(x^x)) | x^(x^(x^x)) | A179405 |
LINKS
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 2, 6, 4, 2, 2, ...
0, 3, 12, 9, 27, 18, 15, 9, ...
0, 8, 52, 32, 156, 100, 80, 56, ...
0, 10, 240, 180, 1110, 650, 590, 360, ...
0, 54, 1188, 954, 8322, 4908, 5034, 2934, ...
0, -42, 6804, 6524, 70098, 41090, 47110, 26054, ...
MAPLE
T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:
g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(
seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=
combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])
end:
f:= proc() local i, l; i, l:= 0, []; proc(n) while n>
nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end
end():
A:= (n, k)-> n!*coeff(series(subs(x=x+1, f(k)), x, n+1), x, n):
seq(seq(A(n, 1+d-n), n=0..d), d=0..12);
MATHEMATICA
T[n_] := If[n == 1, {x}, Map[x^#&, g[n - 1, n - 1]]];
g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten @ Table[ Table[ Table[ Product[T[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {v, g[n - i*j, i - 1]}], {w, Subsets[ Range[ Length[T[i]] + j - 1], {j}]}], {j, 0, n/i}]];
f[n_] := Module[{i = 0, l = {}}, While[n > Length[l], i++; l = Join[l, T[i]]]; l[[n]]];
A[n_, k_] := n! * SeriesCoefficient[f[k] /. x -> x+1, {x, 0, n}];
Table[Table[A[n, 1+d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 08 2019, after Alois P. Heinz *)
KEYWORD
sign,tabl
AUTHOR
Alois P. Heinz, Aug 21 2012
STATUS
approved
Number T(n,k) of distinct values taken by k-th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
+10
10
1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 7, 9, 9, 1, 5, 11, 17, 20, 20, 1, 6, 15, 30, 45, 48, 48, 1, 7, 20, 50, 92, 113, 115, 115, 1, 8, 26, 77, 182, 262, 283, 286, 286, 1, 9, 32, 113, 342, 591, 691, 717, 719, 719, 1, 10, 39, 156, 601, 1263, 1681, 1815, 1838, 1842, 1842
OFFSET
1,5
COMMENTS
T(n,k) <= A000081(n) because there are only A000081(n) different functions that can be represented with n x's.
It is not true that T(n,n) = T(n,n-1) for all n>1: T(13,13) - T(13,12) = 12486 - 12485 = 1.
Conjecture: T(n,n) = A000081(n) for n>=1. It would be nice to have a proof (or a disproof if the conjecture is wrong).
From Bradley Klee, Jun 01 2015 (Start):
I made a descendant graph (Plot 1) that shows how each derivative relates to the next. In this picture the number of nodes in row k gives the value T(n,k). You can see at n=6 collisions begin to occur, and at n=7 the situation is even worse. I then computed a new triangle with collisions removed (Plot 2) and values:
1
1 1
1 2 2
1 3 4 4
1 4 7 9 9
1 5 11 88 20 20
1 6 16 34 46 48 48
I suspect that Plot 2 will admit a recursive construction more readily than the graphs with collisions. You can already see that each graph "n-1" is a subgraph of graph "n" and that the remainder of graph "n" is similar to graph "n-1" with additional branches. (End)
LINKS
Bradley Klee, Plot 1
Bradley Klee, Plot 2
EXAMPLE
For n = 4 there are A000108(3) = 5 possible parenthesizations of x^x^x^x: [x^(x^(x^x)), x^((x^x)^x), (x^(x^x))^x, (x^x)^(x^x), ((x^x)^x)^x]. The first, second, third, fourth derivatives at x=1 are [1,1,1,1,1], [2,2,4,4,6], [9,15,18,18,27], [56,80,100,100,156] => row 4 = [1,3,4,4].
Triangle T(n,k) begins:
1;
1, 1;
1, 2, 2;
1, 3, 4, 4;
1, 4, 7, 9, 9;
1, 5, 11, 17, 20, 20;
1, 6, 15, 30, 45, 48, 48;
1, 7, 20, 50, 92, 113, 115, 115;
...
MAPLE
with(combinat):
F:= proc(n) F(n):=`if`(n<2, [(x+1)$n], map(h->(x+1)^h, g(n-1, n-1))) end:
g:= proc(n, i) option remember; `if`(n=0 or i=1, [(x+1)^n],
`if`(i<1, [], [seq(seq(seq(mul(F(i)[w[t]-t+1], t=1..j)*v,
w=choose([$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)]))
end:
T:= proc(n) local i, l;
l:= map(f->[seq(i!*coeff(series(f, x, n+1), x, i), i=1..n)], F(n));
seq(nops({map(x->x[i], l)[]}), i=1..n)
end:
seq(T(n), n=1..10);
MATHEMATICA
g[n_, i_] := g[n, i] = If[i==1, {x^n}, Flatten@Table[Table[Table[Product[ T[i][[w[[t]] - t+1]], {t, 1, j}]*v, {v, g[n - i*j, i-1]}], {w, Subsets[ Range[Length[T[i]] + j - 1], {j}]}], {j, 0, n/i}]];
T[n_] := T[n] = If[n==1, {x}, x^#& /@ g[n-1, n-1]];
T[n_, k_] := Union[k! (SeriesCoefficient[#, {x, 0, k}]& /@ (T[n] /. x -> x+1))] // Length;
Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 08 2021, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives (conjectured): A000081.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 05 2012
STATUS
approved

Search completed in 0.006 seconds