[go: up one dir, main page]

login
Search: a214838 -id:a214838
     Sort: relevance | references | number | modified | created      Format: long | short | data
Combined Diophantine Chebyshev sequences A054488 and A077413.
+10
14
1, 2, 8, 13, 47, 76, 274, 443, 1597, 2582, 9308, 15049, 54251, 87712, 316198, 511223, 1842937, 2979626, 10741424, 17366533, 62605607, 101219572, 364892218, 589950899, 2126747701, 3438485822, 12395593988, 20040964033, 72246816227, 116807298376
OFFSET
0,2
COMMENTS
-8*a(n)^2 + b(n)^2 = 17, with the companion sequence b(n)= A077242(n).
The number a > 0 belongs to the sequence A077241, if a^2 belongs to the sequence A034856. - Alzhekeyev Ascar M, Apr 27 2012
Numbers k such that k^2 + 2 is a triangular number (see A214838). - Alex Ratushnyak, Mar 07 2013
FORMULA
a(2k) = A054488(k) and a(2k+1)= A077413(k) for k>=0.
G.f.: (1+x)*(1+x+x^2)/(1-6*x^2+x^4).
a(n) = (-1)^n*((4-5*sqrt(2))*(1-(-1)^n*sqrt(2))^(2*floor((n+1)/2))+(4+5*sqrt(2))*(1+(-1)^n*sqrt(2))^(2*floor((n+1)/2)))/8. [Bruno Berselli, Mar 10 2013]
EXAMPLE
8*a(2)^2 + 17 = 8*8^2+17 = 529 = 23^2 = A077242(2)^2.
MATHEMATICA
LinearRecurrence[{0, 6, 0, -1}, {1, 2, 8, 13}, 30] (* Bruno Berselli, Mar 10 2013 *)
CoefficientList[Series[(1 + x) (1 + x + x^2)/(1 - 6 x^2 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 18 2014 *)
PROG
(Maxima) makelist(expand((-1)^n*((4-5*sqrt(2))*(1-(-1)^n*sqrt(2))^(2*floor((n+1)/2))+(4+5*sqrt(2))*(1+(-1)^n*sqrt(2))^(2*floor((n+1)/2)))/8), n, 0, 30); /* Bruno Berselli, Mar 10 2013 */
(Magma) I:=[1, 2, 8, 13]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 18 2014
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved
Triangular numbers of the form k^2 + 3.
+10
2
3, 28, 903, 30628, 1040403, 35343028, 1200622503, 40785822028, 1385517326403, 47066803275628, 1598885794044903, 54315050194251028, 1845112820810490003, 62679520857362409028, 2129258596329511416903, 72332112754346025765628, 2457162575051435364614403
OFFSET
1,1
COMMENTS
There exist triangular numbers of the form k^2 + j for j=0 (A001110), j=1 (A164055), j=2 (A214838), and j=3 (this sequence), but not for j=4,7,8,13,16,18,... (A328792).
FORMULA
a(1) = 3, a(2) = 28; for n > 2, a(n) = 34*a(n-1) - a(n-2) - 46.
PROG
(Python)
limit = 10**7 # rough limit for k
A000217 = set(k*(k+1)//2 for k in range(14*limit//10))
A117950 = set(k**2 + 3 for k in range(limit))
print(sorted(A000217 & A117950)) # Michael S. Branicky, Mar 28 2021
CROSSREFS
Intersection of A000217 and A117950.
Cf. A276598 (the k's).
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Oct 27 2019
STATUS
approved
Numbers that are not the difference between any triangular number and the largest square that does not exceed it.
+10
2
4, 7, 8, 13, 16, 18, 22, 23, 25, 26, 31, 33, 34, 37, 38, 40, 43, 47, 48, 49, 52, 58, 59, 60, 61, 63, 64, 67, 68, 70, 73, 76, 79, 81, 83, 85, 86, 88, 92, 93, 94, 97, 98, 99, 102, 103, 106, 108, 112, 113, 114, 115, 118, 121, 123, 124, 125, 130, 133, 134, 138
OFFSET
1,1
EXAMPLE
For any triangular number t, let f(t) = t - floor(sqrt(t))^2.
0 is not a term: for each term t in A001110, f(t) = 0.
1 is not a term: for each term t > 1 in A164055, f(t) = 1.
2 is not a term: for each term t in A214838, f(t) = 2.
3 is not a term: for each term t > 3 in A328791, f(t) = 3.
4 is a term, however: there exists no triangular number t such that f(t) = 4.
CROSSREFS
The complement of A230044.
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Oct 27 2019
STATUS
approved
Numbers k such that k-1 is a square and k+1 is a triangular number.
+10
1
2, 5, 65, 170, 2210, 5777, 75077, 196250, 2550410, 6666725, 86638865, 226472402, 2943171002, 7693394945, 99981175205, 261348955730, 3396416785970, 8878171099877, 115378189547777, 301596468440090, 3919462027838450, 10245401755863185, 133146330756959525
OFFSET
1,1
COMMENTS
It is easy to prove that there are no numbers k such that k-1 is a triangular number and k+1 is a square.
FORMULA
G.f.: x*(2 + 3*x - 8*x^2 + 3*x^3 + 2*x^4)/((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)).
a(n) = a(-n-1) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5).
a(n) = 35*a(n-2) - 35*a(n-4) + a(n-6) = 34*a(n-2) - a(n-4) + 2.
a(n) = (-2 + (13*sqrt(2) + 7*(-1)^n)*(1 + sqrt(2))^(2*n+1) - (13*sqrt(2) - 7* (-1)^n)*(1 - sqrt(2))^(2*n+1))/32.
a(n) = A214838(n) - 1.
a(n) = A077241(n-1)^2 + 1.
MATHEMATICA
LinearRecurrence[{1, 34, -34, -1, 1}, {2, 5, 65, 170, 2210}, 25]
PROG
(PARI) Vec(x*(2 + 3*x - 8*x^2 + 3*x^3 + 2*x^4)/((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^30)) \\ Colin Barker, Jun 14 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 11 2018
STATUS
approved

Search completed in 0.008 seconds