[go: up one dir, main page]

login
Search: a210380 -id:a210380
     Sort: relevance | references | number | modified | created      Format: long | short | data
Consider all sequences of n distinct positive integers for which no two different elements have a difference which is a square. This sequence gives the smallest maximal integer in such sequences.
+10
4
1, 3, 6, 8, 11, 13, 16, 18, 21, 23, 35, 38, 43, 48, 53, 58, 66, 68, 71, 73, 81, 86, 92, 97, 102, 107, 112, 118, 120, 125, 131, 133, 138, 144, 146, 151, 157, 159, 164, 189, 199, 203, 206, 208, 219, 223, 236, 242, 248, 253, 258, 263, 266, 269, 283, 285, 288, 293, 311, 314, 323, 328, 331, 334, 343, 346
OFFSET
1,2
COMMENTS
László Lovász conjectured, and Hillel Furstenberg and András Sárközy (1978) independently showed that a(n) is superlinear. Erdős conjectured that a(n) >> n^2/log^k n for some k. Sárközy proved that a(n) = o(n^2/log^k n) for all k, but still conjectured that a(n) >> n^(2-e) for all e > 0. Ruzsa showed that in fact a(n) << n^1.365.
a(n) is the least m such that A100719(m) = n. - Glen Whitney, Aug 30 2015
REFERENCES
András Sárközy, On difference sets of sequences of integers, II., Annales Universitatis Scientarium Budapestinensis de Rolando Eötvös Nominatae Sectio Mathematica 21 (1978), pp. 45-53.
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..74
Fausto A. C. Cariboni, Sets that yield a(n) for n = 2..74, Feb 03 2019
Janos Pintz, W. L. Steiger and Endre Szemerédi, On sets of natural numbers whose difference set contains no squares, J. London Math. Soc. 37:2 (1988), pp. 219-231.
I. Z. Ruzsa, Difference sets without squares, Periodica Mathematica Hungarica 15:3 (1984), pp. 205-209.
András Sárközy, On difference sets of sequences of integers, I., Acta Mathematica Academiae Scientiarum Hungaricae 31:1-2 (1978), pp. 125-149.
FORMULA
n * (log n)^((1/12) * log log log log n) << a(n) << n^1.365.
EXAMPLE
There are no nontrivial differences in {1}, so a(1) = 1. {1, 2} contains the square 2-1 as a difference, but {1, 3} is valid so a(2) = 3.
PROG
(PARI) ev(v)=my(h=sum(i=1, #v, v[i]), m, u); if(h<2, return(h)); m=#v; while(v[m]==0, m--); u=vector(m-1, i, v[i]); h=ev(u); for(k=1, sqrtint(m-1), u[m-k^2]=0); max(h, 1+ev(u))
a(n)=my(k=(5*n-3)\2, t); while(1, t=ev(vector(k, i, 1)); if(t==n, return(k)); k+=n-t)
CROSSREFS
Cf. A210380 (no two elements sum to a square).
Cf. A224839.
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
a(17)-a(31) from Giovanni Resta, Dec 21 2012
a(32)-a(58) from Jon E. Schoenfield, Dec 28 2013
a(59)-a(66) from Fausto A. C. Cariboni, Nov 28 2018
STATUS
approved
a(n) is the least M such that there are n values in 0..M with no two values summing to a square.
+10
2
0, 2, 3, 5, 8, 10, 11, 14, 18, 20, 21, 24, 26, 28, 32, 34, 36, 38, 40, 42, 48, 52, 54, 56, 58, 60, 62, 64, 72, 74, 76, 78, 80, 82, 84, 86, 88, 99, 101, 103, 105, 107, 109, 111, 114, 116, 118, 129, 130, 133, 135, 137, 139, 141, 143, 145, 152, 159, 160, 163, 167
OFFSET
1,2
COMMENTS
Examples where the solution is unique:
(14,28) 2 4 6 9 11 13 15 17 18 20 22 24 26 28
(16,34) 3 5 8 10 12 14 16 18 19 21 23 25 27 29 32 34
(17,36) 3 5 8 10 12 14 16 18 19 21 23 25 27 29 32 34 36
(18,38) 3 5 8 10 12 14 16 18 19 21 23 25 27 29 32 34 36 38
(19,40) 3 5 8 10 12 14 16 18 19 21 23 25 27 29 32 34 36 38 40
(20,42) 3 5 8 10 12 14 16 18 19 21 23 25 27 29 32 34 36 38 40 42
CROSSREFS
If the numbers are taken from 1..M instead of 0..M, we get A210380.
KEYWORD
nonn
AUTHOR
Jean-Charles Meyrignac (euler(AT)free.fr), Nov 14 2004
EXTENSIONS
Definition clarified and sequence extended by Don Reble and M. F. Hasler, Jul 08 2014
More terms from Rob Pratt, Jul 11 2014
STATUS
approved
Numbers x satisfying x == 1 (mod 4) or x == 14, 26, 30 (mod 32).
+10
1
1, 5, 9, 13, 14, 17, 21, 25, 26, 29, 30, 33, 37, 41, 45, 46, 49, 53, 57, 58, 61, 62, 65, 69, 73, 77, 78, 81, 85, 89, 90, 93, 94, 97, 101, 105, 109, 110, 113, 117, 121, 122, 125, 126, 129, 133, 137, 141, 142, 145, 149, 153, 154, 157, 158, 161, 165, 169, 173, 174, 177
OFFSET
1,2
COMMENTS
The sum of two distinct terms of this sequence is never a square.
Sequence has density 11/32, the maximal density that can be attained with such a sequence.
REFERENCES
J. P. Massias, Sur les suites dont les sommes des termes 2 à 2 ne sont pas des carrés, Publications du département de mathématiques de Limoges, 1982.
LINKS
J. C. Lagarias, A. M. Odlyzko, J. B. Shearer, On the density of sequences of integers the sum of no two of which is a square. I. Arithmetic progressions, Journal of Combinatorial Theory. Series A, 33 (1982), pp. 167-185.
FORMULA
From Colin Barker, May 20 2018: (Start)
G.f.: x*(1 + 4*x + 4*x^2 + 4*x^3 + x^4 + 3*x^5 + 4*x^6 + 4*x^7 + x^8 + 3*x^9 + x^10 + 2*x^11) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)).
a(n) = a(n-1) + a(n-11) - a(n-12) for n>12.
(End)
PROG
(PARI) isok(n) = ((n%4)==1) || ((n%32)==14) || ((n%32)==26) || ((n%32)==30);
(PARI) Vec(x*(1 + 4*x + 4*x^2 + 4*x^3 + x^4 + 3*x^5 + 4*x^6 + 4*x^7 + x^8 + 3*x^9 + x^10 + 2*x^11) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)) + O(x^40)) \\ Colin Barker, May 20 2018
CROSSREFS
Cf. A016777 (another such sequence), A210380.
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, May 20 2018
STATUS
approved
Size of the largest subset of {1,2,...,n} such that no two elements sum to a perfect square.
+10
0
1, 1, 1, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 7, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27
OFFSET
1,4
FORMULA
The set: {k | k <= n, k == 1 (mod 3)} provides a lower bound: a(n) >= floor((n+2)/3).
EXAMPLE
The first few examples where a(n) increases are {1}, {1,4}, {1,4,6}, and {1,4,6,7}.
CROSSREFS
KEYWORD
nonn
AUTHOR
Zachary DeStefano, May 16 2023
STATUS
approved

Search completed in 0.010 seconds