[go: up one dir, main page]

login
Search: a209327 -id:a209327
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangular array read by rows: T(n,k) is the number of endofunctions f:{1,2,...,n}-> {1,2,...,n} whose largest component has exactly k nodes; n>=1, 1<=k<=n.
+10
4
1, 1, 3, 1, 9, 17, 1, 45, 68, 142, 1, 165, 680, 710, 1569, 1, 855, 6290, 8520, 9414, 21576, 1, 3843, 47600, 134190, 131796, 151032, 355081, 1, 21819, 481712, 1838900, 2372328, 2416512, 2840648, 6805296, 1, 114075, 5025608, 21488292, 50609664, 48934368, 51131664, 61247664, 148869153
OFFSET
1,3
COMMENTS
Here component means weakly connected component in the functional digraph of f.
Row sums are n^n.
T(n,n) = A001865.
For the statistic "length of the smallest component", see A347999.
REFERENCES
R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, Chapter 8.
LINKS
Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432.
FORMULA
E.g.f. for column k: exp( Sum_{n=1..k} A001865(n) x^n/n!) - exp( Sum_{n=1..k-1} A001865(n) x^n/n!).
Sum_{k=1..n} k * T(n,k) = A209327(n). - Alois P. Heinz, Dec 16 2021
EXAMPLE
Triangle T(n,k) begins:
1;
1, 3;
1, 9, 17;
1, 45, 68, 142;
1, 165, 680, 710, 1569;
1, 855, 6290, 8520, 9414, 21576;
1, 3843, 47600, 134190, 131796, 151032, 355081;
1, 21819, 481712, 1838900, 2372328, 2416512, 2840648, 6805296;
...
MAPLE
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
b(n-i, max(m, i))*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 0)):
seq(T(n), n=1..12); # Alois P. Heinz, Dec 16 2021
MATHEMATICA
nn=8; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; c=Log[1/(1-t)]; b=Drop[Range[0, nn]!CoefficientList[Series[c, {x, 0, nn}], x], 1]; f[list_]:=Select[list, #>0&]; Map[f, Drop[Transpose[Table[Range[0, nn]!CoefficientList[Series[ Exp[Sum[b[[i]]x^i/i!, {i, 1, n+1}]]-Exp[Sum[b[[i]]x^i/i!, {i, 1, n}]], {x, 0, nn}], x], {n, 0, nn-1}]], 1]]//Grid
(* Second program: *)
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]*b[n - i, Max[m, i]]* Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, 0]}, Table[Coefficient[p, x, i], {i, 1, n}]];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 30 2021, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives A001865.
Row sums give A000312.
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jan 19 2013
STATUS
approved
Total number of nodes in the smallest connected component summed over all endofunctions on [n].
+10
4
0, 1, 7, 61, 709, 9911, 167111, 3237921, 71850913, 1780353439, 49100614399, 1482061739423, 48873720208853, 1740252983702871, 66793644836081827, 2740470162691675711, 120029057782404141841, 5575505641199441262767, 274412698693082818767335, 14236421024010426118259883
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} k * A347999(n,k).
EXAMPLE
a(2) = 7 = 2 + 2 + 1 + 2: 11, 22, 12, 21.
MAPLE
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(
b(n-i, min(m, i))*g(i)*binomial(n-1, i-1), i=1..n))
end:
a:= n-> (p-> add(coeff(p, x, i)*i, i=0..n))(b(n, n)):
seq(a(n), n=0..23);
MATHEMATICA
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[
b[n - i, Min[m, i]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
a[n_] := Function[p, Sum[Coefficient[p, x, i]*i, {i, 0, n}]][b[n, n]];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz *)
CROSSREFS
Column k=1 of A350202.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 17 2021
STATUS
approved

Search completed in 0.004 seconds