OFFSET
0,2
COMMENTS
Ignoring initial term a(0), equals the logarithmic derivative of A206155.
FORMULA
Limit n->infinity a(n)^(1/n^2) = r^(2*r^2/(1-2*r)) = 2.3520150420944489879258119..., where r = 0.70350607643066243... (see A220359) is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Mar 03 2014
EXAMPLE
L.g.f.: L(x) = 2*x + 6*x^2/2 + 92*x^3/3 + 5410*x^4/4 + 1400652*x^5/5 +...
where exponentiation yields A206155:
exp(L(x)) = 1 + 2*x + 5*x^2 + 38*x^3 + 1425*x^4 + 283002*x^5 + 448468978*x^6 +...
Illustration of initial terms:
a(1) = 1^0 + 1^2 = 2;
a(2) = 1^0 + 2^2 + 1^4 = 6;
a(3) = 1^0 + 3^2 + 3^4 + 1^6 = 92;
a(4) = 1^0 + 4^2 + 6^4 + 4^6 + 1^8 = 5410;
a(5) = 1^0 + 5^2 + 10^4 + 10^6 + 5^8 + 1^10 = 1400652; ...
MATHEMATICA
Table[Sum[Binomial[n, k]^(2*k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)^(2*k))}
for(n=0, 16, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2012
STATUS
approved