[go: up one dir, main page]

login
Search: a204057 -id:a204057
     Sort: relevance | references | number | modified | created      Format: long | short | data
Table T(n,k), n>=0 and k>=0, read by antidiagonals: the k-th column given by the k-th Narayana polynomial.
+10
9
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 11, 4, 1, 1, 1, 42, 45, 19, 5, 1, 1, 1, 132, 197, 100, 29, 6, 1, 1, 1, 429, 903, 562, 185, 41, 7, 1, 1, 1, 1430, 4279, 3304, 1257, 306, 55, 8, 1, 1, 1, 4862, 20793, 20071, 8925, 2426, 469, 71, 9, 1, 1
OFFSET
0,8
COMMENTS
Mirror image of A243631. - Philippe Deléham, Sep 26 2014
LINKS
H. Prodinger, On a functional difference equation of Runyon, Morrison, Carlitz, and Riordan, Séminaire Lotharingien de Combinatoire 46 (2001), Article B46a.
L. Yang, S.-L. Yang, A relation between Schroder paths and Motzkin paths, Graphs Combinat. 36 (2020) 1489-1502, eq. (6).
FORMULA
T(n, k) = Sum_{j>0} A001263(k, j)*n^(j-1); T(n, 0)=1.
T(n, k) = Sum_{j, 0<=j<=k} A088617(k, j)*n^j*(1-n)^(k-j).
The o.g.f. of row n is gf(n) = 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1). - Peter Luschny, Nov 17 2014
G.f. of row n: 1/(1 - x/(1 - n*x/(1 - x/(1 - n*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Aug 10 2017
T(n, k) = Hypergeometric2F1([k-n, k-n+1], [2], k), as a number triangle. - G. C. Greubel, Feb 15 2021
EXAMPLE
Row n=0: 1, 1, 1, 1, 1, 1, 1, ... see A000012.
Row n=1: 1, 1, 2, 5, 14, 42, 132, ... see A000108.
Row n=2: 1, 1, 3, 11, 45, 197, 903, ... see A001003.
Row n=3: 1, 1, 4, 19, 100, 562, 3304, ... see A007564.
Row n=4: 1, 1, 5, 29, 185, 1257, 8925, ... see A059231.
Row n=5: 1, 1, 6, 41, 306, 2426, 20076, ... see A078009.
Row n=6: 1, 1, 7, 55, 469, 4237, 39907, ... see A078018.
Row n=7: 1, 1, 8, 71, 680, 6882, 72528, ... see A081178.
Row n=8: 1, 1, 9, 89, 945, 10577, 123129, ... see A082147.
Row n=9: 1, 1, 10, 109, 1270, 15562, 198100, ... see A082181.
Row n=10: 1, 1, 11, 131, 161, 1661, 22101, ... see A082148.
Row n=11: 1, 1, 12, 155, 2124, 30482, 453432, ... see A082173.
... - Philippe Deléham, Apr 03 2013
The first few rows of the antidiagonal triangle are:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 5, 3, 1, 1;
1, 14, 11, 4, 1, 1;
1, 42, 45, 19, 5, 1, 1; - G. C. Greubel, Feb 15 2021
MAPLE
gf := n -> 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1):
for n from 0 to 11 do PolynomialTools:-CoefficientList(convert( series(gf(n), x, 12), polynom), x) od; # Peter Luschny, Nov 17 2014
MATHEMATICA
(* First program *)
Unprotect[Power]; Power[0 | 0, 0 | 0] = 1; Protect[Power]; Table[Function[n, Sum[Apply[Binomial[#1 + #2, #1] Binomial[#1, #2]/(#2 + 1) &, {k, j}]*n^j*(1 - n)^(k - j), {j, 0, k}]][m - k + 1] /. k_ /; k <= 0 -> 1, {m, -1, 9}, {k, m + 1, 0, -1}] // Flatten (* Michael De Vlieger, Aug 10 2017 Note: this code renders 0^0 = 1. To restore normal Power functionality: Unprotect[Power]; ClearAll[Power]; Protect[Power] *)
(* Second program *)
Table[Hypergeometric2F1[1-n+k, k-n, 2, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 15 2021 *)
PROG
(Sage) flatten([[hypergeometric([k-n, k-n+1], [2], k).simplify_hypergeometric() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 15 2021
(Magma) [Truncate(HypergeometricSeries(k-n, k-n+1, 2, k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 15 2021
CROSSREFS
Main diagonal is A242369.
A diagonal is in A099169.
Cf. A204057 (another version), A088617, A243631.
Cf. A132745.
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Jan 23 2004
STATUS
approved
Square array of Narayana polynomials N_n evaluated at the integers, A(n,k) = N_n(k), n>=0, k>=0, read by antidiagonals.
+10
9
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 11, 14, 1, 1, 1, 5, 19, 45, 42, 1, 1, 1, 6, 29, 100, 197, 132, 1, 1, 1, 7, 41, 185, 562, 903, 429, 1, 1, 1, 8, 55, 306, 1257, 3304, 4279, 1430, 1, 1, 1, 9, 71, 469, 2426, 8925, 20071, 20793, 4862, 1
OFFSET
0,9
COMMENTS
Mirror image of A008550. - Philippe Deléham, Sep 26 2014
LINKS
FORMULA
T(n, k) = 2F1([1-n, -n], [2], k), 2F1 the hypergeometric function.
T(n, k) = P(n,1,-2*n-1,1-2*k)/(n+1), P the Jacobi polynomials.
T(n, k) = sum(j=0..n-1, binomial(n,j)^2*(n-j)/(n*(j+1))*k^j), for n>0.
For a recurrence see the second Maple program.
The o.g.f. of column n is gf(n) = 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1). - Peter Luschny, Nov 17 2014
T(n, k) ~ (sqrt(k)+1)^(2*n+1)/(2*sqrt(Pi)*k^(3/4)*n^(3/2)). - Peter Luschny, Nov 17 2014
The n-th row can for n>=1 be computed by a linear recurrence, a(x) = sum(k=1..n, (-1)^(k+1)*binomial(n,k)*a(x-k)) with initial values a(k) = p(n,k) for k=0..n and p(n,x) = sum(j=0..n-1, binomial(n-1,j)*binomial(n,j)*x^j/(j+1)) (implemented in the fourth Maple script). - Peter Luschny, Nov 19 2014
(n+1) * T(n,k) = (k+1) * (2*n-1) * T(n-1,k) - (k-1)^2 * (n-2) * T(n-2,k) for n>1. - Seiichi Manyama, Aug 08 2020
Sum_{k=0..n} T(k, n-k) = Sum_{k=0..n} 2F1([-k, 1-k], [2], n-k) = A132745(n). - G. C. Greubel, Feb 16 2021
EXAMPLE
[0] [1] [2] [3] [4] [5] [6] [7]
[0] 1, 1, 1, 1, 1, 1, 1, 1
[1] 1, 1, 1, 1, 1, 1, 1, 1
[2] 1, 2, 3, 4, 5, 6, 7, 8 .. A000027
[3] 1, 5, 11, 19, 29, 41, 55, 71 .. A028387
[4] 1, 14, 45, 100, 185, 306, 469, 680 .. A090197
[5] 1, 42, 197, 562, 1257, 2426, 4237, 6882 .. A090198
[6] 1, 132, 903, 3304, 8925, 20076, 39907, 72528 .. A090199
[7] 1, 429, 4279, 20071, 65445, 171481, 387739, 788019 .. A090200
First few rows of the antidiagonal triangle are:
1;
1, 1;
1, 1, 1;
1, 1, 2, 1;
1, 1, 3, 5, 1;
1, 1, 4, 11, 14, 1;
1, 1, 5, 19, 45, 42, 1; - G. C. Greubel, Feb 16 2021
MAPLE
# Computed with Narayana polynomials:
N := (n, k) -> binomial(n, k)^2*(n-k)/(n*(k+1));
A := (n, x) -> `if`(n=0, 1, add(N(n, k)*x^k, k=0..n-1));
seq(print(seq(A(n, k), k=0..7)), n=0..7);
# Computed by recurrence:
Prec := proc(n, N, k) option remember; local A, B, C, h;
if n = 0 then 1 elif n = 1 then 1+N+(1-N)*(1-2*k)
else h := 2*N-n; A := n*h*(1+N-n); C := n*(h+2)*(N-n);
B := (1+h-n)*(n*(1-2*k)*(1+h)+2*k*N*(1+N));
(B*Prec(n-1, N, k) - C*Prec(n-2, N, k))/A fi end:
T := (n, k) -> Prec(n, n, k)/(n+1);
seq(print(seq(T(n, k), k=0..7)), n=0..7);
# Array by o.g.f. of columns:
gf := n -> 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1):
for n from 0 to 11 do PolynomialTools:-CoefficientList(convert( series(gf(n), x, 12), polynom), x) od; # Peter Luschny, Nov 17 2014
# Row n by linear recurrence:
rec := n -> a(x) = add((-1)^(k+1)*binomial(n, k)*a(x-k), k=1..n):
ini := n -> seq(a(k) = A(n, k), k=0..n): # for A see above
row := n -> gfun:-rectoproc({rec(n), ini(n)}, a(x), list):
for n from 1 to 7 do row(n)(8) od; # Peter Luschny, Nov 19 2014
MATHEMATICA
MatrixForm[Table[JacobiP[n, 1, -2*n-1, 1-2*x]/(n+1), {n, 0, 7}, {x, 0, 7}]]
Table[Hypergeometric2F1[1-k, -k, 2, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
PROG
(Sage)
def NarayanaPolynomial():
R = PolynomialRing(ZZ, 'x')
D = [1]
h = 0
b = True
while True:
if b :
for k in range(h, 0, -1):
D[k] += x*D[k-1]
h += 1
yield R(expand(D[0]))
D.append(0)
else :
for k in range(0, h, 1):
D[k] += D[k+1]
b = not b
NP = NarayanaPolynomial()
for _ in range(8):
p = next(NP)
[p(k) for k in range(8)]
(Sage)
def A243631(n, k): return 1 if n==0 else sum( binomial(n, j)^2*k^j*(n-j)/(n*(j+1)) for j in [0..n-1])
flatten([[A243631(k, n-k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Feb 16 2021
(Magma)
A243631:= func< n, k | n eq 0 select 1 else (&+[ Binomial(n, j)^2*k^j*(n-j)/(n*(j+1)): j in [0..n-1]]) >;
[A243631(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
CROSSREFS
Cf. A001263, A008550 (mirror), A204057 (another version), A242369 (main diagonal), A099169 (diagonal), A307883, A336727.
Cf. A132745.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jun 08 2014
STATUS
approved
a(n) = (1/n) * Sum_{k=0..n-1} C(n,k) * C(n,k+1) * (n-1)^k.
+10
4
1, 2, 11, 100, 1257, 20076, 387739, 8766248, 226739489, 6595646860, 212944033051, 7550600079672, 291527929539433, 12169325847587832, 545918747361417291, 26183626498897556176, 1336713063706757646465
OFFSET
1,2
COMMENTS
A diagonal of Narayana array (A008550).
LINKS
Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - From N. J. A. Sloane, Oct 08 2012
FORMULA
From Vaclav Kotesovec, Apr 18 2014, extended Dec 01 2021: (Start)
a(n) = Hypergeometric2F1([1-n,-n], [2], -1+n).
a(n) ~ exp(2*sqrt(n)-2) * n^(n-7/4) / (2*sqrt(Pi)) * (1 + 119/(48*sqrt(n))). (End)
MAPLE
A099169:= n-> add( binomial(n, j)*binomial(n-1, j)*(n-1)^j/(j+1), j=0..n-1);
seq( A099169(n), n=1..30) # G. C. Greubel, Feb 16 2021
MATHEMATICA
Join[{1}, Table[Sum[Binomial[n, k]Binomial[n, k+1](n-1)^k, {k, 0, n-1}]/n, {n, 2, 20}]] (* Harvey P. Dale, Oct 07 2013 *)
Table[Hypergeometric2F1[1-n, -n, 2, -1+n], {n, 1, 20}] (* Vaclav Kotesovec, Apr 18 2014 *)
PROG
(Sage)
def A099169(n): return sum( binomial(n, j)*binomial(n-1, j)*(n-1)^j/(j+1) for j in [0..n-1])
[A099169(n) for n in [1..30]] # G. C. Greubel, Feb 16 2021
(Magma)
A099169:= func< n | (&+[Binomial(n, j)*Binomial(n-1, j)*(n-1)^j/(j+1): j in [0..n-1]]) >;
[A099169(n): n in [1..30]]; // G. C. Greubel, Feb 16 2021
(PARI) a(n) = (1/n) * sum(k=0, n-1, binomial(n, k) * binomial(n, k+1) * (n-1)^k); \\ Michel Marcus, Feb 16 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Oct 09 2004
STATUS
approved
a(n) = P(n, 1, -2*n-1, 1-2*n)/(n+1), P the Jacobi polynomial.
+10
4
1, 1, 3, 19, 185, 2426, 39907, 788019, 18130401, 475697854, 14004694451, 456820603086, 16343563014649, 636020474595988, 26736885607750515, 1207031709414024451, 58225055056545820545, 2988064457570991780854, 162517551565531508113699, 9336340704734213892357498
OFFSET
0,3
LINKS
FORMULA
a(n) = 2F1([1-n, -n], [2], n), 2F1 the hypergeometric function.
a(n) = Sum_{j=0..n-1} ( binomial(n,j)^2*(n-j)/(j+1)*n^(j-1) ), for n>0.
a(n) ~ (sqrt(n)+1)^(2*n+1)/(2*sqrt(Pi)*(n+1/2)^(9/4)). - Peter Luschny, Nov 17 2014
MAPLE
a := n -> `if`(n=0, 1, add(binomial(n, j)^2*(n-j)/(j+1)*n^(j-1), j=0..n-1)); seq(a(n), n=0..20);
MATHEMATICA
Table[JacobiP[n, 1, -2*n-1, 1-2*n]/(n+1), {n, 0, 20}]
PROG
(Sage)
def A242369(n): return 1 if n==0 else sum( binomial(n, j)^2*(n-j)*n^(j-1)/(j+1) for j in [0..n-1])
[A242369(n) for n in [0..20]] # G. C. Greubel, Feb 16 2021
(Magma)
A242369:= func< n | n eq 0 select 1 else (&+[Binomial(n, j)^2*(n-j)*n^(j-1)/(j+1): j in [0..n-1]]) >;
[A242369(n): n in [0..30]]; // G. C. Greubel, Feb 16 2021
CROSSREFS
Main diagonal of A008550, A243631.
Cf. A204057.
KEYWORD
nonn
AUTHOR
Peter Luschny, Jun 08 2014
STATUS
approved

Search completed in 0.010 seconds