[go: up one dir, main page]

login
Search: a200996 -id:a200996
     Sort: relevance | references | number | modified | created      Format: long | short | data
Smallest k such that k*n+1 is prime.
+10
52
1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 2, 1, 4, 2, 2, 1, 6, 1, 10, 2, 2, 1, 2, 3, 4, 2, 4, 1, 2, 1, 10, 3, 2, 3, 2, 1, 4, 5, 2, 1, 2, 1, 4, 2, 4, 1, 6, 2, 4, 2, 2, 1, 2, 2, 6, 2, 4, 1, 12, 1, 6, 5, 2, 3, 2, 1, 4, 2, 2, 1, 8, 1, 4, 2, 2, 3, 6, 1, 4, 3, 2, 1, 2, 4, 12, 2, 4, 1, 2, 2, 6, 3, 4, 3, 2, 1, 4, 2
OFFSET
1,3
COMMENTS
Conjecture: for every n > 1 there exists a number k < n such that n*k + 1 is a prime. - Amarnath Murthy, Apr 17 2001
A stronger conjecture: for every n there exists a number k < 1 + n^(.75) such that n*k + 1 is a prime. I have verified this up to n = 10^6. Also, the expression 1 + n^(.74) does not work as an upper bound (counterexample: n = 19). - Joseph L. Pe, Jul 16 2002
Stronger version of the conjecture verified up to 10^9. - Mauro Fiorentini, Jul 23 2023
It is known that, for almost all n, a(n) <= n^2. From Heath-Brown's result (1992) obtained with help of the GRH, it follows that a(n) <= (phi(n)*log(n))^2. - Vladimir Shevelev, Apr 30 2012
Conjecture: a(n) = O(log(n)*log(log(n))). - Thomas Ordowski, Oct 17 2014
I conjecture the opposite: a(n) / (log n log log n) is unbounded. See A194945 for records in this sequence. - Charles R Greathouse IV, Mar 21 2016
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, section 2.12, pp. 127-130.
P. Ribenboim, (1989), The Book of Prime Number Records. Chapter 4, Section IV.B.: The Smallest Prime In Arithmetic Progressions, pp. 217-223.
LINKS
Steven R. Finch, Linnik's Constant
D. Graham, On Linnik's Constant, Acta Arithm., 39, 1981, pp. 163-179.
D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. 64(3) (1992), pp. 265-338.
Pengcheng Niu and Junli Zhang, On Two Conjectures of A. Murthy, ResearchGate (2024).
I. Niven and B. Powell, Primes in Certain Arithmetic Progressions, Amer. Math. Monthly, 83, 1976, pp. 467-489.
FORMULA
It seems that Sum_{k=1..n} a(k) is asymptotic to (zeta(2)-1)*n*log(n) where zeta(2)-1 = Pi^2/6-1 = 0.6449... . - Benoit Cloitre, Aug 11 2002
a(n) = (A034694(n)-1) / n. - Joerg Arndt, Oct 18 2020
EXAMPLE
If n=7, the smallest prime in the sequence 8, 15, 22, 29, ... is 29, so a(7)=4.
MAPLE
A034693 := proc(n)
for k from 1 do
if isprime(k*n+1) then
return k;
end if;
end do:
end proc: # R. J. Mathar, Jul 26 2015
MATHEMATICA
a[n_]:=(k=0; While[!PrimeQ[++k*n + 1]]; k); Table[a[n], {n, 100}] (* Jean-François Alcover, Jul 19 2011 *)
PROG
(PARI) a(n)=if(n<0, 0, s=1; while(isprime(s*n+1)==0, s++); s)
(Haskell)
a034693 n = head [k | k <- [1..], a010051 (k * n + 1) == 1]
-- Reinhard Zumkeller, Feb 14 2013
(Python)
from sympy import isprime
def a(n):
k = 1
while not isprime(k*n+1): k += 1
return k
print([a(n) for n in range(1, 99)]) # Michael S. Branicky, May 05 2022
CROSSREFS
Cf. A010051, A034694, A053989, A071558, A085420, A103689, A194944 (records), A194945 (positions of records), A200996.
KEYWORD
nonn,nice
AUTHOR
STATUS
approved
Smallest k such that nk-1 is prime.
+10
17
3, 2, 1, 1, 4, 1, 2, 1, 2, 2, 4, 1, 8, 1, 2, 2, 4, 1, 2, 1, 2, 2, 6, 1, 6, 4, 2, 3, 6, 1, 2, 1, 4, 2, 4, 2, 2, 1, 6, 2, 4, 1, 6, 1, 2, 3, 6, 1, 2, 3, 2, 2, 4, 1, 2, 3, 2, 3, 6, 1, 8, 1, 4, 2, 6, 2, 6, 1, 2, 2, 4, 1, 14, 1, 2, 2, 4, 3, 2, 1, 8, 2, 4, 1, 6, 3, 2, 3, 16, 1, 2, 4, 6, 3, 4, 2, 2, 1, 2, 2
OFFSET
1,1
LINKS
FORMULA
a(n) = (A038700(n)+1)/n.
EXAMPLE
a(5)=4 because the smallest prime in the sequence 5k-1 (4,9,14,19,24...) is 19 when k=4
PROG
(Haskell)
a053989 n = head [k | k <- [1..], a010051' (k * n - 1) == 1]
-- Reinhard Zumkeller, Feb 14 2013
(PARI) a(n)=my(j); while(!isprime(j++*n-1), ); j \\ Charles R Greathouse IV, Apr 18 2013
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Apr 04 2000
STATUS
approved
Smallest k such that n*k + 1 and n*k - 1 are twin primes.
+10
16
4, 2, 2, 1, 6, 1, 6, 9, 2, 3, 18, 1, 24, 3, 2, 12, 6, 1, 12, 3, 2, 9, 6, 3, 6, 12, 4, 15, 12, 1, 42, 6, 6, 3, 12, 2, 54, 6, 8, 6, 30, 1, 24, 15, 4, 3, 6, 4, 18, 3, 2, 6, 120, 2, 12, 48, 4, 6, 18, 1, 258, 21, 14, 3, 30, 3, 24, 15, 2, 6, 18, 1, 84, 27, 2, 3, 6, 4, 132, 3, 10, 15, 54, 5, 12, 12
OFFSET
1,1
COMMENTS
Conjecture: a(n) < sqrt(n)*log(n) for all n > 17261. This has been verified for n up to 3*10^7. It implies the inequality a(n) < n for each n > 127. - Zhi-Wei Sun, Jan 07 2013
A200996(n) <= a(n). - Reinhard Zumkeller, Feb 14 2013
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
MATHEMATICA
Table[k=1; While[!And@@PrimeQ[n*k+{1, -1}], k++]; k, {n, 86}] (* Jayanta Basu, May 26 2013 *)
PROG
(PARI) for(n=1, 100, s=1; while(isprime(s*n+1)*isprime(n*s-1)==0, s++); print1(s, ", "))
(Haskell)
a071558 n = head [k | k <- [1..], let x = k * n,
a010051' (x - 1) == 1, a010051' (x + 1) == 1]
-- Reinhard Zumkeller, Feb 14 2013
CROSSREFS
Cf. A071407 (k at prime n).
Cf. A220143, A220144 (record values).
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 30 2002
STATUS
approved
a(n) is the least k such that either k*n - 1 or k*n + 1 (or both) is prime.
+10
6
1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 6, 1, 6, 1, 2, 2, 2, 1, 4, 1, 2, 1, 4, 1, 4, 1, 2, 2, 4, 1, 2, 1, 2, 1, 2, 1, 6, 2, 2, 1, 2, 1, 2, 3, 4, 3, 2, 1, 2, 1, 2, 1, 6, 1, 6, 1, 2
OFFSET
1,5
LINKS
FORMULA
a(n) <= A200996(n). - Reinhard Zumkeller, Feb 14 2013
a(n) = min {A053989(n), A034693(n)}. - Reinhard Zumkeller, Feb 14 2013
a(A002110(n)/3+3) >= ceiling((prime(n+1)-1)/3) for n >= 2. Equality holds for n = 2, 4, 6, 8, 10, 12, 22, 25, 31, 116, 155, 156, 197, ... . - Pontus von Brömssen, Oct 16 2021
a(A002110(n)/3-3) >= ceiling((prime(n+1)-1)/3) for n >= 3. Equality holds for n = 3, 4, 5, 6, 7, 9, 39, 51, 59, 65, 98, 311, ... . - Pontus von Brömssen, Oct 19 2021
MATHEMATICA
f[n_] := Block[{k = 1}, While[ ! PrimeQ[k*n - 1] && ! PrimeQ[k*n + 1], k++ ]; k]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Feb 12 2005 *)
lk[n_]:=Module[{k=1}, While[NoneTrue[k*n+{1, -1}, PrimeQ], k++]; k]; Array[ lk, 120] (* The program uses the NoneTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 01 2016 *)
PROG
(Haskell)
a103689 n = min (a053989 n) (a034693 n)
-- Reinhard Zumkeller, Feb 14 2013
(PARI) a(n) = my(k=1); while (!isprime(k*n+1) && !isprime(k*n-1), k++); k; \\ Michel Marcus, Oct 18 2021
KEYWORD
easy,nonn
AUTHOR
Pierre CAMI, Feb 12 2005
EXTENSIONS
Edited, corrected and extended by Robert G. Wilson v, Feb 19 2005
STATUS
approved

Search completed in 0.008 seconds