[go: up one dir, main page]

login
Search: a197863 -id:a197863
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of times n occurs in A197863.
+20
1
1, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2
OFFSET
1,4
FORMULA
Multiplicative with a(p^e) = 0 if e = 1, 2 if e = 2, and 1 otherwise.
MATHEMATICA
f[p_, e_] := Switch[e, 1, 0, 2, 2, _, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 28 2023 *)
PROG
(PARI) a(n)=my(es=factor(n)[, 2]~); prod(k=1, #es, if(es[k]==1, 0, if(es[k]==2, 2, 1)))
(Scheme) (define (A197881 n) (cond ((= 1 n) n) (else (* (case (A067029 n) ((1) 0) ((2) 2) (else 1)) (A197881 (A028234 n)))))) ;; Antti Karttunen, Jul 23 2017
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
EXTENSIONS
More terms from Antti Karttunen, Jul 23 2017
STATUS
approved
Powerfree part of n: product of primes that divide n only once.
+10
57
1, 2, 3, 1, 5, 6, 7, 1, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 3, 1, 26, 1, 7, 29, 30, 31, 1, 33, 34, 35, 1, 37, 38, 39, 5, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 2, 55, 7, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 1, 73, 74, 3, 19, 77, 78, 79, 5
OFFSET
1,2
COMMENTS
The previous name was: Write n = K^2*F where F is squarefree and F = g*f where g = gcd(K,F) and f = F/g; then a(n) = f(n) = F(n)/g(n). Thus gcd(K^2,f) = 1.
Differs from A007913; they coincide if and only if g(n) = 1.
a(n) is the powerfree part of n; i.e., if n=Product(pi^ei) over all i (prime factorization) then a(n)=Product(pi^ei) over those i with ei=1; if n=b*c^2*d^3 then a(n) is minimum possible value of b. - Henry Bottomley, Sep 01 2000
Also denominator of n/rad(n)^2, where rad is the squarefree kernel of n (A007947), numerator: A062378. - Reinhard Zumkeller, Dec 10 2002
Largest unitary squarefree number dividing n (the unitary squarefree kernel of n). - Steven Finch, Mar 01 2004
From Bernard Schott, Dec 19 2022: (Start)
a(n) = 1 iff n is a squareful number (A001694).
1 < a(n) < n iff n is a nonsquarefree number that is not squareful (A332785).
a(n) = n iff n is a squarefree number (A005117). (End)
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
FORMULA
a(n) = A007913(n)/gcd(A008833(n), A007913(n)).
a(n) = n/A057521(n).
Multiplicative with a(p) = p and a(p^e) = 1 for e > 1. - Vladeta Jovovic, Nov 01 2001
Dirichlet g.f.: zeta(s)*Product_{primes p} (1 + p^(1-s) - p^(-s) - p^(1-2s) + p^(-2s)). - R. J. Mathar, Dec 21 2011
a(n) = A007947(n)/A071773(n). - observed by Velin Yanev, Aug 27 2017, confirmed by Antti Karttunen, Nov 28 2017
a(1) = 1; for n > 1, a(n) = A020639(n)^A063524(A067029(n)) * a(A028234(n)). - Antti Karttunen, Nov 28 2017
a(n*m) = a(n)*a(m)/(gcd(n,a(m))*gcd(m,a(n))) for all n and m > 0 (conjectured). - Velin Yanev, Feb 06 2019. [This follows easily from the comment of Vladeta Jovovic. - N. J. A. Sloane, Mar 14 2019]
From Vaclav Kotesovec, Dec 19 2019: (Start)
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{primes p} (1 - p^(1-3*s) + p^(2-3*s) - p^(2-2*s) + p^(-2*s) - p^(-s)).
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = Product_{primes p} (1 - 2/p^2 + 2/p^4 - 1/p^5) = 0.394913518073109872954607634745304266741971541072... (End)
a(n) = A197863(n)/n. - Amiram Eldar, Sep 01 2023
MAPLE
A055231 := proc(n)
a := 1 ;
if n > 1 then
for f in ifactors(n)[2] do
if op(2, f) = 1 then
a := a*op(1, f) ;
end if;
end do:
end if;
a ;
end proc: # R. J. Mathar, Dec 23 2011
MATHEMATICA
rad[n_] := Times @@ First /@ FactorInteger[n]; a[n_] := Denominator[n/rad[n]^2]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 20 2013, after Reinhard Zumkeller *)
f[p_, e_] := If[e==1, p, 1]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
PROG
(PARI) A055231(n)={
local(a=1);
f=factor(n) ;
for(i=1, matsize(f)[1],
if( f[i, 2] ==1, a *= f[i, 1]
)
) ;
a ;
} /* R. J. Mathar, Mar 12 2012 */
(PARI) a(n) = {my(f=factor(n)); for (k=1, #f~, if (f[k, 2] > 1, f[k, 2] = 0); ); factorback(f); } \\ Michel Marcus, Aug 27 2017
(Scheme, with memoization-macro definec) (definec (A055231 n) (if (= 1 n) 1 (* (if (= 1 (A067029 n)) (A020639 n) 1) (A055231 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017
(Python)
from math import prod
from sympy import factorint
def A055231(n): return prod(p for p, e in factorint(n).items() if e == 1) # Chai Wah Wu, Nov 14 2022
CROSSREFS
Positions of 1's: A001694.
Cf. A008833, A007913, A007947, A000188, A057521, A055773 (computed for n!), A056169 (number of prime divisors), A056671 (number of divisors), A092261 (sum of divisors of the n-th term), A197863, A332785.
Cf. A005117 (subsequence).
KEYWORD
nonn,easy,mult
AUTHOR
Labos Elemer, Jun 21 2000
EXTENSIONS
Name replaced with a simpler description (based on Henry Bottomley's comment) by Antti Karttunen, Nov 28 2017
Incorrect comments and example deleted by Peter Munn, Nov 30 2022
STATUS
approved
Largest cubefree number dividing n.
+10
22
1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 4, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 12, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69, 70, 71, 36, 73
OFFSET
1,2
LINKS
Florentin Smarandache, Only Problems, Not Solutions!, 1993.
FORMULA
Multiplicative with a(p^e) = p^(min(e, 2)). - David W. Wilson, Aug 01 2001
a(n) = max{A212793(A027750(n,k)) * A027750(n,k): k=1..A000005(n)}. - Reinhard Zumkeller, May 27 2012
a(n) = A071773(n)*A007947(n). - observed by Velin Yanev, Aug 20 2017, confirmed by Antti Karttunen, Nov 28 2017
a(n) = n / A062378(n) = n / A003557(A003557(n)). - Antti Karttunen, Nov 28 2017
Sum_{k=1..n} a(k) ~ (1/2) * c * n^2, where c = Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.881513... (A065465). - Amiram Eldar, Oct 13 2022
MATHEMATICA
Table[Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 0 :> p^Min[e, 2]], {n, 73}] (* Michael De Vlieger, Jul 18 2017 *)
PROG
(Haskell)
a007948 = last . filter ((== 1) . a212793) . a027750_row
-- Reinhard Zumkeller, May 27 2012, Jan 06 2012
(PARI) a(n) = my(f=factor(n)); for (i=1, #f~, f[i, 2] = min(f[i, 2], 2)); factorback(f); \\ Michel Marcus, Jun 09 2014
(Scheme, with memoization-macro definec) (definec (A007948 n) (if (= 1 n) n (* (expt (A020639 n) (min 2 (A067029 n))) (A007948 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017
KEYWORD
nonn,mult
AUTHOR
R. Muller
EXTENSIONS
More terms from Henry Bottomley, Jun 18 2001
STATUS
approved
a(n) is the smallest exponentially odd number that is divisible by n.
+10
13
1, 2, 3, 8, 5, 6, 7, 8, 27, 10, 11, 24, 13, 14, 15, 32, 17, 54, 19, 40, 21, 22, 23, 24, 125, 26, 27, 56, 29, 30, 31, 32, 33, 34, 35, 216, 37, 38, 39, 40, 41, 42, 43, 88, 135, 46, 47, 96, 343, 250, 51, 104, 53, 54, 55, 56, 57, 58, 59, 120, 61, 62, 189, 128, 65
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = p^e if e is odd and p^(e+1) otherwise.
a(n) = n iff n is in A268335.
a(n) = A064549(n)/A007913(n).
a(n) = n*A336643(n).
a(n) = n^2/A350390(n).
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - p^(6-5*s) + p^(7-5*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(3-3*s) - p^(4-3*s) - 2*p^(2-2*s)).
Sum_{k=1..n} a(k) ~ Pi^2 * f(2) * n^2 / 24 * (log(n) + 3*gamma - 1/2 + 12*zeta'(2)/Pi^2 + f'(2)/f(2)), where
f(2) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...,
f'(2) = f(2) * Sum_{p prime} (11*p - 5) * log(p) / (p^3 + p^2 - 3*p + 1) = f(1) * 4.7165968208567630786609552448708126340725121316268495170070986645608062483...
and gamma is the Euler-Mascheroni constant A001620. (End)
MATHEMATICA
f[p_, e_] := If[OddQ[e], p^e, p^(e + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]%2, f[i, 1]^f[i, 2], f[i, 1]^(f[i, 2]+1)))};
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1 - p^2*X^2) * (1 + p*X + p^3*X^2 - p^2*X^2))[n], ", ")) \\ Vaclav Kotesovec, Sep 09 2023
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jul 29 2022
STATUS
approved
a(n) is the smallest cubefull exponentially odd number (A335988) that is divisible by n.
+10
12
1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 32, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 32, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648, 3375, 97336
OFFSET
1,2
COMMENTS
First differs from A053149 and A356193 at n=16.
LINKS
FORMULA
Multiplicative with a(p^e) = p^max(e,3) if e is odd and p^(e+1) otherwise.
a(n) = n iff n is in A335988.
a(n) = A356191(n) iff n is a powerful number (A001694).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + (3*p^2-1)/(p^3*(p^2-1))) = 1.69824776889117043774... .
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(6)/4) * Product_{p prime} (1 - 1/p^2 + 1/p^5 - 2/p^6 + 1/p^8 + 1/p^9 - 1/p^10) = 0.1559368144... . - Amiram Eldar, Nov 13 2022
MATHEMATICA
f[p_, e_] := If[OddQ[e], p^Max[e, 3], p^(e + 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
PROG
(PARI) a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]%2, f[i, 1]^max(f[i, 2], 3), f[i, 1]^(f[i, 2]+1)))};
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jul 29 2022
STATUS
approved
Smallest perfect power (at least a square) that is a multiple of n.
+10
11
1, 4, 9, 4, 25, 36, 49, 8, 9, 100, 121, 36, 169, 196, 225, 16, 289, 36, 361, 100, 441, 484, 529, 144, 25, 676, 27, 196, 841, 900, 961, 32, 1089, 1156, 1225, 36, 1369, 1444, 1521, 400, 1681, 1764, 1849, 484, 225, 2116, 2209, 144, 49, 100, 2601, 676, 2809, 216, 3025
OFFSET
1,2
COMMENTS
The prime signature of a(n) is not determined by the prime signature of n. For example, a(2^3*3^5) = 2^3*3^6, but a(2^3*5^5) = 2^5*5^5. - David Wasserman, May 03 2005
Likewise, this sequence is not multiplicative. The smallest exception is a(24) = 144 > 72 = a(3)*a(8). - Franklin T. Adams-Watters, Oct 18 2011
LINKS
FORMULA
a(n)/n <= A007947(n) (the squarefree kernel of n).
a(p^k) = p^k, a(k) = A007947(k)^2 for cubefree k. Furthermore, the upper bound on a(n)/n can be tightened to A007913(n). - Charlie Neder, Dec 26 2018
From Amiram Eldar, Jul 09 2022: (Start)
a(n) = n iff n is in A001597.
a(n) = n * A160400(n). (End)
EXAMPLE
a(54) = 216 = 6^3. 54 is the least n such that a(n)/n does not divide A007947(n).
MATHEMATICA
a[n_] := n * SelectFirst[Range[n], GCD @@ FactorInteger[n*#][[;; , 2]] > 1 &]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Jul 09 2022 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Sep 03 2003
EXTENSIONS
Edited and extended by David Wasserman, May 03 2005
STATUS
approved
a(n) is the smallest cubefull number (A036966) that is a multiple of n.
+10
9
1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 16, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 32, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648, 3375, 97336
OFFSET
1,2
COMMENTS
First differs from A053149 and A356192 at n=16.
LINKS
FORMULA
Multiplicative with a(p^e) = p^max(e,3).
a(n) = n iff n is in A036966.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + (3*p-2)/(p^3*(p-1))) = 1.76434793373691907811... . - Amiram Eldar, Jul 29 2022
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(3)/4) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 2/p^5 - 1/p^6 - 1/p^8 + 2/p^9 - 1/p^10) = 0.1559111567... . - Amiram Eldar, Nov 13 2022
a(n) = n * A360541(n). - Amiram Eldar, Sep 01 2023
MATHEMATICA
f[p_, e_] := p^Max[e, 3]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50]
PROG
(PARI) a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i, 1]^max(f[i, 2], 3))};
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jul 29 2022
STATUS
approved
a(n) is the smallest multiple of n whose prime factorization exponents are all powers of 2.
+10
9
1, 2, 3, 4, 5, 6, 7, 16, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 48, 25, 26, 81, 28, 29, 30, 31, 256, 33, 34, 35, 36, 37, 38, 39, 80, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 162, 55, 112, 57, 58, 59, 60, 61, 62, 63, 256, 65, 66, 67
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = p^(2^ceiling(log_2(e))).
a(n) = n iff n is in A138302.
MATHEMATICA
f[p_, e_] := p^(2^Ceiling[Log2[e]]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) s(n) = {my(e=logint(n, 2)); if(n == 2^e, n, 2^(e+1))};
a(n) = {my(f=factor(n)); prod(i=1, #f~, f[i, 1]^s(f[i, 2]))};
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jul 29 2022
STATUS
approved
The number of divisors of the smallest powerful number that is a multiple of n.
+10
4
1, 3, 3, 3, 3, 9, 3, 4, 3, 9, 3, 9, 3, 9, 9, 5, 3, 9, 3, 9, 9, 9, 3, 12, 3, 9, 4, 9, 3, 27, 3, 6, 9, 9, 9, 9, 3, 9, 9, 12, 3, 27, 3, 9, 9, 9, 3, 15, 3, 9, 9, 9, 3, 12, 9, 12, 9, 9, 3, 27, 3, 9, 9, 7, 9, 27, 3, 9, 9, 27, 3, 12, 3, 9, 9, 9, 9, 27, 3, 15, 5, 9, 3
OFFSET
1,2
FORMULA
a(n) = A000005(A197863(n)).
Multiplicative with a(p) = 3 and a(p^e) = e+1 for e >= 2.
a(n) >= A000005(n), with equality if and only if n is powerful (A001694).
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + 1/p^s - 2/p^(2*s) + 1/p^(3*s)).
From Vaclav Kotesovec, Jan 30 2024: (Start)
Dirichlet g.f.: zeta(s)^3 * Product_{p prime} (1 - 3/p^(2*s) + 3/p^(3*s) - 1/p^(4*s)).
Let f(s) = Product_{primes p} (1 - 3/p^(2*s) + 3/p^(3*s) - 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ n * (f(1)*log(n)^2/2 + log(n)*((3*gamma - 1)*f(1) + f'(1)) + f(1)*(1 - 3*gamma + 3*gamma^2 - 3*sg1) + (3*gamma - 1)*f'(1) + f''(1)/2), where
f(1) = Product_{primes p} (1 - 3/p^2 + 3/p^3 - 1/p^4) = 0.33718787379158997196169281615215824494915412775816393888028828465611936...,
f'(1) = f(1) * Sum_{primes p} (6*p^2 - 9*p + 4) * log(p) / (p^4 - 3*p^2 + 3*p - 1) = f(1) * 2.35603132119230949914708478515883136510141335620960622673206366...,
f''(1) = f'(1)^2/f(1) + f(1) * Sum_{primes p} (-p*(12*p^5 - 27*p^4 + 16*p^3 + 9*p^2 - 12*p + 3) * log(p)^2 / (p^4 - 3*p^2 + 3*p - 1)^2) = f'(1)^2/f(1) + f(1) * (-7.3049026768735124341194605967271037971153161932236518820258070165876...),
gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). (End)
MATHEMATICA
f[p_, e_] := If[e == 1, 3, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> if(x == 1, 3, x+1), factor(n)[, 2]));
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 30 2024
STATUS
approved
The sum of divisors of the smallest powerful number that is a multiple of n.
+10
4
1, 7, 13, 7, 31, 91, 57, 15, 13, 217, 133, 91, 183, 399, 403, 31, 307, 91, 381, 217, 741, 931, 553, 195, 31, 1281, 40, 399, 871, 2821, 993, 63, 1729, 2149, 1767, 91, 1407, 2667, 2379, 465, 1723, 5187, 1893, 931, 403, 3871, 2257, 403, 57, 217, 3991, 1281, 2863
OFFSET
1,2
LINKS
FORMULA
a(n) = A000203(A197863(n)).
Multiplicative with a(p) = p^2 + p + 1 and a(p^e) = (p^(e+1)-1)/(p-1) for e >= 2.
a(n) >= A000203(n), with equality if and only if n is powerful (A001694).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(2*s-3) - 1/p^(2*s-2) + 1/p^(3*s-3)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2) * zeta(3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^5 + 1/p^6 - 1/p^7) = 1.01304866467771286896... .
MATHEMATICA
f[p_, e_] := If[e == 1, p^2 + p + 1, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] == 1, f[i, 2] = 2)); sigma(f); }
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 30 2024
STATUS
approved

Search completed in 0.009 seconds