[go: up one dir, main page]

login
Search: a196930 -id:a196930
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows in which row n lists in nondecreasing order the smallest part of every partition of n.
+0
9
0, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,4
COMMENTS
If n >= 1, row n lists the smallest parts of every partition of n in the order produced by the shell model of partitions of A135010, hence row n lists the parts of the last section of the set of partitions of n, except the emergent parts (See A182699).
Row n has length A000041(n). Row sums give A046746. Right border of triangle gives A001477. Row n starts with A000041(n-1) ones, n >= 1.
EXAMPLE
Written as a triangle:
0,
1,
1,2,
1,1,3,
1,1,1,2,4,
1,1,1,1,1,2,5,
1,1,1,1,1,1,1,2,2,3,6
1,1,1,1,1,1,1,1,1,1,1,2,2,3,7,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4,8,
...
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Oct 21 2011
STATUS
approved
Total sum of parts greater than 1 in all the partitions of n except one copy of the smallest part greater than 1 of every partition.
+0
5
0, 0, 0, 2, 5, 16, 30, 63, 108, 189, 298, 483, 720, 1092, 1582, 2297, 3225, 4551, 6244, 8592, 11590, 15622, 20741, 27536, 36066, 47198, 61150, 79077, 101391, 129808, 164934, 209213, 263745, 331807, 415229, 518656, 644719, 799926, 988432, 1218979
OFFSET
1,4
COMMENTS
Also partial sums of A182709. Total sum of emergent parts in all partitions of all numbers <= n.
Also total sum of parts of all regions of n that do not contain 1 as a part (Cf. A083751, A187219). - Omar E. Pol, Mar 04 2012
LINKS
FORMULA
a(n) = A066186(n) - A196039(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)). - Vaclav Kotesovec, Jul 06 2019
KEYWORD
nonn
AUTHOR
Omar E. Pol, Oct 27 2011
STATUS
approved
Total sum of the smallest part of every partition of every shell of n.
+0
2
0, 1, 4, 9, 18, 30, 50, 75, 113, 162, 231, 318, 441, 593, 798, 1058, 1399, 1824, 2379, 3066, 3948, 5042, 6422, 8124, 10264, 12884, 16138, 20120, 25027, 30994, 38312, 47168, 57955, 70974, 86733, 105676, 128516, 155850, 188644, 227783, 274541
OFFSET
0,3
COMMENTS
Partial sums of A046746.
Total sum of parts of all regions of n that contain 1 as a part. - Omar E. Pol, Mar 11 2012
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
a(n) = A066186(n) - A196025(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2*Pi*sqrt(2*n)). - Vaclav Kotesovec, Jul 06 2019
EXAMPLE
For n = 5 the seven partitions of 5 are:
5
3 + 2
4 + 1
2 + 2 + 1
3 + 1 + 1
2 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1
.
The five shells of 5 (see A135010 and also A138121), written as a triangle, are:
1
2, 1
3, 1, 1
4, (2, 2), 1, 1, 1
5, (3, 2), 1, 1, 1, 1, 1
.
The first "2" of row 4 does not count, also the "3" of row 5 does not count, so we have:
1
2, 1
3, 1, 1
4, 2, 1, 1, 1
5, 2, 1, 1, 1, 1, 1
.
thus a(5) = 1+2+1+3+1+1+4+2+1+1+1+5+2+1+1+1+1+1 = 30.
MAPLE
b:= proc(n, i) option remember;
`if`(n=i, n, 0) +`if`(i<1, 0, b(n, i-1) +`if`(n<i, 0, b(n-i, i)))
end:
a:= proc(n) option remember;
b(n, n) +`if`(n=0, 0, a(n-1))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Apr 03 2012
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == i, n, 0] + If[i < 1, 0, b[n, i-1] + If[n < i, 0, b[n-i, i]]]; Accumulate[Table[b[n, n], {n, 0, 50}]] (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Omar E. Pol, Oct 27 2011
STATUS
approved
Total number of parts greater than 1 in all partitions of n minus the number of partitions of n into parts each less than n.
+0
5
0, 0, 0, 0, 1, 2, 6, 10, 20, 32, 54, 81, 128, 184, 273, 385, 549, 754, 1048, 1412, 1917, 2547, 3392, 4444, 5837, 7556, 9791, 12553, 16086, 20429, 25935, 32665, 41108, 51404, 64190, 79721, 98882, 122043, 150417, 184618, 226239
OFFSET
0,6
COMMENTS
Also partial sums of A182699. Total number of emergent parts in all partitions of the numbers <= n.
Also total number of parts of all regions of n that do not contain 1 as a part (Cf. A083751, A187219). - Omar E. Pol, Mar 04 2012
FORMULA
a(n) = A096541(n) - A000065(n) = 1 + A096541(n) - A000041(n) = 1 + A006128(n) - A000070(n).
a(n) = A006128(n) - A026905(n), n >= 1.
KEYWORD
nonn
AUTHOR
Omar E. Pol, Oct 27 2011
STATUS
approved

Search completed in 0.023 seconds